1
|
Fu K, Zhao J, Zhong L, Xu H, Yu X, Bi X, Huang C. Dual therapy with phospholipase and metalloproteinase inhibitors from Sinonatrix annularis alleviated acute kidney and liver injury caused by multiple snake venoms. Biomed Pharmacother 2024; 177:116967. [PMID: 38908206 DOI: 10.1016/j.biopha.2024.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.
Collapse
Affiliation(s)
- Kepu Fu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianqi Zhao
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lipeng Zhong
- Clinical Laboratory Center, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330209, China
| | - Haiyan Xu
- Blood Transfusion Department, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Xinhui Yu
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowen Bi
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunhong Huang
- School of Basic Medical Sciences, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
3
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
4
|
Lian Q, Zhong L, Fu K, Ji Y, Zhang X, Liu C, Huang C. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities. Biomed Pharmacother 2022; 156:113900. [DOI: 10.1016/j.biopha.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
5
|
Regner PI, Saggese MD, de Oliveira VC, Lanari LC, Desio MA, Quaglia AIE, Wiemeyer G, Capdevielle A, Zuñiga SN, de Roodt CJI, de Roodt AR. Neutralization of "Chaco eagle" (Buteogallus coronatus) serum on some activities of Bothrops spp. venoms. Toxicon 2022; 216:73-87. [PMID: 35714890 DOI: 10.1016/j.toxicon.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Several species of reptiles and mammals have components in their sera that can neutralize toxic components present in snake venoms. In this manuscript, we studied the neutralizing capacity of Chaco eagle's (Buteogallus coronatus) serum. This South American bird of prey eats snakes as a regular part of its diet and has anatomical features that protect from snakes' bites. The neutralizing potency of the Chaco eagle's serum was tested on lethal, hemorrhagic, procoagulant, and phospholipase activities of the venom of "yarará grande" (Bothrops alternatus) and on phospholipase activity of "yarará ñata" (Bothrops ammodytoides) venom; both snakes are known to be the prey of Chaco eagle. Sera of crested caracara (Caracara plancus-a scavenger, omnivorous pan-American bird of prey), secretary bird (Saggitarius serpentarius-an omnivorous bird of prey from Africa that can include venomous snakes in its diet), common hen (Gallus gallus), rat (Rattus norvegicus), mouse (Mus musculus), horse (Equus caballus), and dog (Canis lupus familiaris) were also tested to compare the inhibitory capacity of neutralization. To test isologous and xenologous neutralization, sera from Bothrops alternatus and white-eared opossum (Didelphis albiventris), respectively, were used due to their known inhibitory activity on Bothrops venoms. As a control for the neutralization activity, antibothropic antivenom was used. Chaco eagle's serum neutralized hemorrhagic and phospholipasic activity and slightly neutralized the coagulation and the lethal activity of Bothrops spp. venom. The neutralizing capacity was present in the non-immunoglobulin fraction of the serum, which showed components of acidic characteristics and lower molecular weight than IgY, in correspondence with the characteristics of PLA2s and SVMPs inhibitors described in sera from some snakes and mammals. These studies showed that Chaco eagle's serum neutralizes all toxic activities tested at a higher level than sera from animal species in which inhibitors of snake venoms have not been described (p < 0.05), while it is lower or similar in neutralizing capacity to white-eared opossum and B. alternatus sera.
Collapse
Affiliation(s)
- Pablo I Regner
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Cátedra de Medicina, Producción y Tecnologías de Fauna Acuática y Terrestre, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Caba, Argentina
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vanessa C de Oliveira
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina
| | - Laura C Lanari
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Marcela A Desio
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Agustín I E Quaglia
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Guillermo Wiemeyer
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Andrés Capdevielle
- Ecoparque Buenos Aires, Ministerio de Ambiente y Espacio Público, Buenos Aires, Argentina
| | | | - Carolina J I de Roodt
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina.
| |
Collapse
|
6
|
Lian Q, Zhang D, Fu K, Liu C, Cao L, Xiong K, Huang C. The molecular basis of venom resistance in the non-venomous snake Sinonatrix annularis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123182. [DOI: 10.1016/j.jchromb.2022.123182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
|
7
|
Biochemical and functional characterization of a new recombinant phospholipase A 2 inhibitor from Crotalus durissus collilineatus snake serum. Int J Biol Macromol 2020; 164:1545-1553. [PMID: 32735921 DOI: 10.1016/j.ijbiomac.2020.07.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 plays an important role in many diseases. Thus, the production of bioactive molecules, which can modulate PLA2 activity, became an important target for the pharmaceutical industry. Previously, we demonstrated the inhibitory and anti-angiogenic effect of γCdcPLI, the natural PLA2inhibitor from Crotalus durissus collilineatus. The aim of the present study was to recombinantly express the γCdcPLI inhibitor and analyze its biochemical and functional characteristics. Based on the amino acid sequence from the natural protein, we designed a synthetic gene for production of a non-tagged recombinant recγCdcPLI using the pHis-Parallel2 vector. To enable disulfide bond formation, protein expression was performed using E. coli Rosetta-gamiB. The protein was purified by anion and affinity chromatography with a yield of 5 mg/L. RecγCdcPLI showed similar secondary structure in CD and FTIR, revealing predominately β-strands. Analogous to the natural protein, recγCdcPLI was able to form oligomers of ~5.5 nm. The inhibitor was efficiently binding to PLA2 from honeybee (Kd = 1.48 μM) and was able to inhibit the PLA2 activity. Furthermore, it decreased the vessel formation in HUVEC cells, suggesting an anti-angiogenic potential. Heterologous production of recγCdcPLI is highly efficient and thus enables enhanced drug design for treatment of diseases triggered by PLA2 activity.
Collapse
|
8
|
Fortes-Dias CL, Macedo DHF, Barbosa RP, Souza-Silva G, Ortolani PL. Identification and characterization of the first endogenous phospholipase A 2 inhibitor from a non-venomous tropical snake, Boa constrictor (Serpentes: Boidae). J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190044. [PMID: 32231698 PMCID: PMC7092641 DOI: 10.1590/1678-9199-jvatitd-2019-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Endogenous phospholipase A2 inhibitors from snake blood (sbPLIs) have been isolated from several species around the world, with the primary function of self-protection against the action of toxic phospholipases A2. In American snakes, sbPLIs were solely described in pit vipers, in which the natural protection role is justified. In this study, we described a sbPLI in Boa constrictor (popularly known as jiboia), a non-venomous snake species from America. Methods PLA2 inhibitory activity was tested in the blood plasma of B. constrictor using C. d. terrificus venom as the enzyme source. Antibodies developed against CNF, a sbγPLI from Crotalus durissus terrificus, were used to investigate the presence of homologues in the blood plasma of B. constrictor. A CNF-like molecule with a PLA2 inhibitory activity was purified by column chromatography. The encoding gene for the inhibitor was cloned from B. constrictor liver tissue. The DNA fragment was cloned, purified and sequenced. The deduced primary sequence of interest was aligned with known sbγPLIs from the literature. Results The blood plasma of B. constrictor displayed PLA2 inhibitory activity. A CNF-like molecule (named BcNF) was identified and purified from the blood plasma of B. constrictor. Basic properties such as molecular mass, composing amino acids, and pI were comparable, but BcNF displayed reduced specific activity in PLA2 inhibition. BcNF showed highest identity scores (ISs) with sbγPLIs from pit vipers from Latin America (90-100%), followed by gamma inhibitors from Asian viperid (80-90%). ISs below 70% were obtained for BcNF and non-venomous species from Asia. Conclusion A functional sbγPLI (BcNF) was described in the blood plasma of B. constrictor. BcNF displayed higher primary identity with sbγPLIs from Viperidae than to sbγPLIs from non-venomous species from Asia. The physiological role played by sbγPLIs in non-venomous snake species remains to be understood. Further investigation is needed.
Collapse
Affiliation(s)
- Consuelo L Fortes-Dias
- Research & Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, MG, Brazil
| | | | | | - Gabriel Souza-Silva
- Research & Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, MG, Brazil
| | - Paula Ladeira Ortolani
- Research & Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Wang Y, Zhang J, Zhang D, Xiao H, Xiong S, Huang C. Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation. Molecules 2018; 23:molecules23020391. [PMID: 29439513 PMCID: PMC6017252 DOI: 10.3390/molecules23020391] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A2s (PLA2) is a major component of snake venom with diverse pathologic toxicities and, therefore, a potential target for antivenom therapy. Varespladib was initially designed as an inhibitor of mammal PLA2s, and was recently repurposed to a broad-spectrum inhibitor of PLA2 in snake venom. To evaluate the protective abilities of varespladib to hemorrhage, myonecrosis, and systemic toxicities that are inflicted by different crude snake venoms, subcutaneous ecchymosis, muscle damage, and biochemical variation in serum enzymes derived from the envenomed mice were determined, respectively. Varespladib treatment showed a significant inhibitory effect to snake venom PLA2, which was estimated by IC50 in vitro and ED50 in vivo. In animal models, the severely hemorrhagic toxicity of D. acutus and A. halys venom was almost fully inhibited after administration of varespladib. Moreover, signs of edema in gastrocnemius muscle were remarkably attenuated by administration of varespladib, with a reduced loss of myonecrosis and desmin. Serum levels of creatine kinase, lactate dehydrogenase isoenzyme 1, aspartate transaminase, and alanine transaminase were down-regulated after treatment with varespladib, which indicated the protection to viscera injury. In conclusion, varespladib may be a potential first-line drug candidate in snakebite envenomation first aid or clinical therapy.
Collapse
Affiliation(s)
- Yiding Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Jing Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Denghong Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Huixiang Xiao
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Shengwei Xiong
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Chunhong Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
10
|
Snake Venom PLA 2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6592820. [PMID: 29318152 PMCID: PMC5727668 DOI: 10.1155/2017/6592820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022]
Abstract
Snakebite envenomation is a neglected global health problem, causing substantial mortality, disability, and psychological morbidity, especially in rural tropical and subtropical zones. Antivenin is currently the only specific medicine for envenomation. However, it is restricted by cold storage, snakebite diagnosis, and high price. Snake venom phospholipase A2s (svPLA2s) are found in all kinds of venomous snake families (e.g., Viperidae, Elapidae, and Colubridae). Along with their catalytic activity, svPLA2s elicit a wide variety of pharmacological effects that play a pivotal role in envenomation damage. Hence, neutralization of the svPLA2s could weaken or inhibit toxic damage. Here we overviewed the latest knowledge on the distribution, pathophysiological effects, and inhibitors of svPLA2s to elucidate the potential for a novel, wide spectrum antivenom drug targeting svPLA2s.
Collapse
|
11
|
Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes. Int J Biol Macromol 2017; 103:525-532. [DOI: 10.1016/j.ijbiomac.2017.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022]
|
12
|
Li J, Xiong Y, Sun S, Yu L, Huang C. Preparation of monoclonal antibodies against gamma-type phospholipase A 2 inhibitors and immunodetection of these proteins in snake blood. J Venom Anim Toxins Incl Trop Dis 2017; 23:37. [PMID: 28785278 PMCID: PMC5543733 DOI: 10.1186/s40409-017-0128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background The gamma-type phospholipase A2 inhibitor (PLIγ) is a natural protein commonly found in snake serum, which can neutralize pathophysiological effects of snake venom phospholipases A2. Therefore, this protein is a potential candidate to the development of a novel antivenom. To the best of our knowledge, there is no antibody currently available for PLIγ identification and characterization. Methods Bioinformatics prediction of epitope using DNAStar software was performed based on the sequence of Sinonatrix annularis PLIγ (SaPLIγ). The best epitope 151CPVLRLSNRTHEANRNDLIKVA172 was chosen and synthesized, and then conjugated to keyhole limpet hemocyanin and bovine serum albumin for use as an immunogen and plate-coating antigen, respectively. Results Eighteen IgG anti-PLIγ mAb hybridoma cell strains were obtained, and all the mAbs had positive interaction with recombinant His6-PLIγ and natural SaPLIγ. Moreover, the mAb from 10E9 strain was also successfully used for the immunodetection of other snake serum PLIγs. cDNA sequence alignment of those PLIγs from different snake species showed that their epitope segments were highly homologous. Conclusions The successful preparation of anti-PLIγmAb is significant for further investigation on the relationship between the structure and function of PLIγs, as well as the interaction between PLIγs and PLA2s.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006 China
| | - Ying Xiong
- Second Affiliated Hospital to Nanchang University, Nanchang University, Nanchang, 330006 China
| | - Shimin Sun
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006 China
| | - Lehan Yu
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006 China
| | - Chunhong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, 461 Bayi Avenue, Nanchang, 330006 China
| |
Collapse
|
13
|
Xiong S, Luo Y, Zhong L, Xiao H, Pan H, Liao K, Yang M, Huang C. Investigation of the inhibitory potential of phospholipase A 2 inhibitor gamma from Sinonatrix annularis to snake envenomation. Toxicon 2017; 137:83-91. [PMID: 28746861 DOI: 10.1016/j.toxicon.2017.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/28/2022]
Abstract
SaPLIγ is a novel gamma phospholipase A2 inhibitor (PLI) recently isolated from Sinonatrix annularis, a Chinese endemic non-venomous snake. To explore the neutralization effects of saPLIγ in snakebite envenomation, a dose equivalent to LD50 of Deinagkistrodon acutus, Agkistrodon halys and Naja atra venom with/without saPLIγ was inoculated into the gastrocnemius muscle of female Kunming mice. The ability of saPLIγ to inhibit myonecrosis and systemic toxicity were evaluated through investigations of muscle histopathology, and determination of the serum levels of creatine kinase (CK), lactate dehydrogenase isoenzyme1 (LDH1) and aspartate transferase (AST). Edema of the gastrocnemius muscle was evaluated by calculating the width difference between the inoculated limb and the contralateral leg. Desmin loss in the gastrocnemius muscle was determined by Western blot analysis. Co-immunoprecipitation and shotgun LC-MS/MS analyses were performed to identify venom proteins that interact with saPLIγ. All the envenomed mice had significantly elevated serum CK, LDH1 and AST levels, whereas the levels were decreased significantly in the presence of saPLIγ. Histopathological evaluation of gastrocnemius muscle sections showed severe snake venom-induced damage, characterized by leukocyte infiltration and erythrocyte leakage, leading to local edema. Myonecrosis, hemorrhage and desmin loss were significantly attenuated by saPLIγ. SaPLIγ interacted with a wide range of venom proteins, including PLA2s, metalloproteinases and C type lectins, which may contribute to broad anti-venom effects.
Collapse
Affiliation(s)
- Shengwei Xiong
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Yunyun Luo
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Lipeng Zhong
- The Fourth Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Huixiang Xiao
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Hong Pan
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Keren Liao
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Mengxue Yang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Chunhong Huang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China; Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
14
|
Endogenous phospholipase A 2 inhibitors in snakes: a brief overview. J Venom Anim Toxins Incl Trop Dis 2016; 22:37. [PMID: 28031735 PMCID: PMC5175389 DOI: 10.1186/s40409-016-0092-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins, although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs belong to one of three structural classes – namely sbαPLI, sbβPLI or sbγPLI – depending on the presence of characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein (MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs and sbγPLIs from two Old World – Gloydius brevicaudus and Malayopython reticulatus – and two New World – Bothrops alternatus and Crotalus durissus terrificus – snake species will be emphasized.
Collapse
|
15
|
Isolation and biochemical characterization of a gamma-type phospholipase A 2 inhibitor from Macropisthodon rudis snake serum. Toxicon 2016; 122:1-6. [PMID: 27641751 DOI: 10.1016/j.toxicon.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022]
Abstract
A novel phospholipaseA2 (PLA2) inhibitory protein (PLI) was purified from the serum of Macropisthodon rudis, a non-venomous snake mainly found in southern China. The molecular mass of the purified PLI was 160 kDa as determined by Superdex 200HR; however, the PLI protein had only one subunit of 25.4 kDa as determined by 12% SDS-PAGE, indicating an oligomeric protein. PLI cDNA obtained by PCR from the liver of Macropisthodon rudis, revealed 549 bps coding for a mature protein of 183 amino acid residues. Based on an amino acid sequence alignment with venomous and non-venomous snakes, this inhibitor was determined to be in the γ type family of PLI. In vitro experiments showed that PLIγ inhibited enzymatic, inflammatory, and antibacterial activities of snake venom PLA2 isolated from Agkistrodon acutus.
Collapse
|