1
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Peters SJ, Mitrovic SM, Rodgers KJ, Bishop DP. Bioaccumulation of β-methylamino-L-alanine (BMAA) by mussels exposed to the cyanobacteria Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125081. [PMID: 39374762 DOI: 10.1016/j.envpol.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments, raising concerns about the health impacts associated with the toxins they produce. One of these toxins is β-methylamino-L-alanine (BMAA), a neurotoxin linked to neurodegenerative diseases. Monitoring BMAA levels in the environment is challenging due to trace concentrations and complex matrices, and new approaches are needed for assessing exposure risk. In this laboratory study, Australian freshwater mussels, Velesunio ambiguus, were exposed to a BMAA-producing cyanobacterium, Microcystis aeruginosa, to assess its accumulation of the toxin over time. A sample preparation and analysis method was developed to allow accurate quantification of BMAA in the mussels at concentrations as low as 0.4 ng/g. Mussels exposed to M. aeruginosa accumulated BMAA, with concentrations increasing over the exposure period. Rapid depuration occurred after exposure to the cyanobacterium ended, with concentrations of BMAA quickly returning to pre-exposure levels. These results demonstrate the potential for mussels to be used as bioindicators in the field for monitoring BMAA levels over time, where rapid depuration is unlikely.
Collapse
Affiliation(s)
- Siobhan J Peters
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Pereira-Santos AR, Candeias E, Magalhães JD, Empadinhas N, Esteves AR, Cardoso SM. Neuronal control of microglia through the mitochondria. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167167. [PMID: 38626829 DOI: 10.1016/j.bbadis.2024.167167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.
Collapse
Affiliation(s)
- A R Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - J D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Li M, Qiu J, Yan G, Zheng X, Li A. How does the neurotoxin β-N-methylamino-L-alanine exist in biological matrices and cause toxicity? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171255. [PMID: 38417517 DOI: 10.1016/j.scitotenv.2024.171255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
5
|
Sini P, Galleri G, Ciampelli C, Galioto M, Padedda BM, Lugliè A, Iaccarino C, Crosio C. Evaluation of cyanotoxin L-BMAA effect on α-synuclein and TDP43 proteinopathy. Front Immunol 2024; 15:1360068. [PMID: 38596666 PMCID: PMC11002123 DOI: 10.3389/fimmu.2024.1360068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
The complex interplay between genetic and environmental factors is considered the cause of neurodegenerative diseases including Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Among the environmental factors, toxins produced by cyanobacteria have received much attention due to the significant increase in cyanobacteria growth worldwide. In particular, L-BMAA toxin, produced by diverse taxa of cyanobacteria, dinoflagellates and diatoms, has been extensively correlated to neurodegeneration. The molecular mechanism of L-BMAA neurotoxicity is still cryptic and far from being understood. In this research article, we have investigated the molecular pathways altered by L-BMAA exposure in cell systems, highlighting a significant increase in specific stress pathways and an impairment in autophagic processes. Interestingly, these changes lead to the accumulation of both α-synuclein and TDP43, which are correlated with PD and ALS proteinopathy, respectively. Finally, we were able to demonstrate specific alterations of TDP43 WT or pathological mutants with respect to protein accumulation, aggregation and cytoplasmic translocation, some of the typical features of both sporadic and familial ALS.
Collapse
Affiliation(s)
- Paola Sini
- Laboratory of Molecular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Grazia Galleri
- Laboratory of Molecular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Cristina Ciampelli
- Laboratory of Molecular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Manuela Galioto
- Laboratory of Molecular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Bachisio Mario Padedda
- Laboratory of Ecology, Department of Architecture, Design and Urban Planning, University of Sassari, Sassari, Italy
| | - Antonella Lugliè
- Laboratory of Ecology, Department of Architecture, Design and Urban Planning, University of Sassari, Sassari, Italy
| | - Ciro Iaccarino
- Laboratory of Molecular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Crosio
- Laboratory of Molecular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
6
|
Violi JP, Pu L, Pravadali-Cekic S, Bishop DP, Phillips CR, Rodgers KJ. Effects of the Toxic Non-Protein Amino Acid β-Methylamino-L-Alanine (BMAA) on Intracellular Amino Acid Levels in Neuroblastoma Cells. Toxins (Basel) 2023; 15:647. [PMID: 37999510 PMCID: PMC10674354 DOI: 10.3390/toxins15110647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The cyanobacterial non-protein amino acid (AA) β-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro. Cells were treated with 1000 µM BMAA and intracellular free AA concentrations in treated and control cells were compared at six time-points over a 48 h culture period. BMAA had a profound effect on intracellular AA levels at specific time points but in most cases, AA homeostasis was re-established in the cell. The most heavily impacted amino acid was serine which was depleted in BMAA-treated cells from 9 h onwards. Correction of serine depletion could be a factor in the observation that supplementation with L-serine protects against BMAA toxicity in vitro and in vivo. AAs that could potentially be involved in protection against BMAA-induced oxidation such as histidine, tyrosine, and phenylalanine were depleted in cells at later time points.
Collapse
Affiliation(s)
- Jake P. Violi
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Lisa Pu
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Sercan Pravadali-Cekic
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia (D.P.B.)
| | - David P. Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia (D.P.B.)
| | - Connor R. Phillips
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Kenneth J. Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| |
Collapse
|
7
|
Garamszegi SP, Banack SA, Duque LL, Metcalf JS, Stommel EW, Cox PA, Davis DA. Detection of β-N-methylamino-l-alanine in postmortem olfactory bulbs of Alzheimer's disease patients using UHPLC-MS/MS: An autopsy case-series study. Toxicol Rep 2023; 10:87-96. [PMID: 36691605 PMCID: PMC9860447 DOI: 10.1016/j.toxrep.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/08/2023] Open
Abstract
Introduction Cyanobacterial blooms produce toxins that may become aerosolized, increasing health risks through inhalation exposures. Health related effects on the lower respiratory tract caused by these toxins are becoming better understood. However, nasal exposures to cyanotoxins remain understudied, especially for those with neurotoxic potential. Here, we present a case series study evaluating exposure to β-N-methylamino-l-alanine (BMAA), a cyanobacterial toxin linked to neurodegenerative disease, in postmortem olfactory tissues of individuals with varying stages of Alzheimer's disease (AD). Methods Olfactory bulb (Ob) tissues were collected during autopsies performed between 2014 and 2017 from six South Florida brain donors (ages 47-78) with residences less than 140 m from a freshwater body. A triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method validated according to peer AOAC International guidelines was used to detect BMAA and two BMAA isomers: 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Quantitative PCR was performed on the contralateral Ob to evaluate the relative expression of genes related to proinflammatory cytokines (IL-6 & IL-18), apoptotic pathways (CASP1 & BCL2), and mitochondrial stress (IRF1 & PINK1). Immunohistochemistry was also performed on the adjacent olfactory tract (Ot) to evaluate co-occurring neuropathology with BMAA tissue concentration. Results BMAA was detected in the Ob of all cases at a median concentration of 30.4 ng/g (Range <LLOQ - 488.4 ng/g). Structural isomers were also detected with median concentrations of 28.8 ng/g (AEG) and 103.6 ng/g (2,4-DAB). In addition, we found that cases with BMAA tissue concentrations above the <LLOQ also displayed increased expression of IL-6 (3.3-fold), CASP1 (1.7-fold), and IRF1 (1.6-fold). Reactive microglial, astrogliosis, myelinopathy, and neuronopathy of axonal processes in the Ot were also observed in cases with higher BMAA tissue concentrations. Conclusion Our study demonstrates that the cyanobacterial toxin BMAA can be detected in the olfactory pathway, a window to the brain, and its presence may increase the occurrence of proinflammatory cytokines, reactive glia, and toxicity to axonal processes. Further studies will be needed to evaluate BMAA's toxicity via this route of exposure and factors that increase susceptibility.
Collapse
Key Words
- 2,4-DAB, 2,4-diaminobutyric acid
- AD, Alzheimer's disease
- AEG, N-(2-aminoethyl)glycine
- ALS/PDC, Amyotrophic lateral sclerosis/ parkinsonism dementia complex
- BMAA, β-N-methylamino-l-alanine
- CBs, Cyanobacterial blooms
- Cyanobacteria
- Cyanotoxin
- IL-6
- Inflammation
- OD, Olfactory dysfunction
- Ob, Olfactory bulb
- Olfactory dysfunction
- Ot, Olfactory tract
- UHPLC-MS/MS, Ultra-performance liquid chromatography and tandem mass spectrometry
Collapse
Affiliation(s)
- Susanna P. Garamszegi
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - Linda L. Duque
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James S. Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - Elijah W. Stommel
- Department of Neurology, Dartmouth-Hitchcock Medical Center Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - David A. Davis
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Corresponding author.
| |
Collapse
|
8
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
9
|
Peters SJ, Rodgers KJ, Mitrovic SM, Bishop DP. The Changes in Cyanobacterial Concentration of β-Methylamino-L-Alanine during a Bloom Event. Molecules 2022; 27:7382. [PMID: 36364208 PMCID: PMC9658504 DOI: 10.3390/molecules27217382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/24/2024] Open
Abstract
β-N-methylamino L-alanine (BMAA) is a neurotoxin linked to high incidences of neurodegenerative disease. The toxin, along with two of its common isomers, 2,4-diaminobuytric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG), is produced by multiple genera of cyanobacteria worldwide. Whilst there are many reports of locations and species of cyanobacteria associated with the production of BMAA during a bloom, there is a lack of information tracking changes in concentration across a single bloom event. This study aimed to measure the concentrations of BMAA and its isomers through the progression and end of a cyanobacteria bloom event using liquid chromatography-triple quadrupole-mass spectrometry. BMAA was detected in all samples analysed, with a decreasing trend observed as the bloom progressed. BMAA's isomers were also detected in all samples, however, they did not follow the same decreasing pattern. This study highlights the potential for current sampling protocols that measure a single time point as representative of a bloom's overall toxin content to underestimate BMAA concentration during a bloom event.
Collapse
Affiliation(s)
- Siobhan J. Peters
- Hyphenated Mass Spectrometry Laboratory (HyMaS), Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kenneth J. Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Simon M. Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
11
|
Cyanobacteria, Cyanotoxins, and Neurodegenerative Diseases: Dangerous Liaisons. Int J Mol Sci 2021; 22:ijms22168726. [PMID: 34445429 PMCID: PMC8395864 DOI: 10.3390/ijms22168726] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of neurodegenerative disease (ND) is increasing, partly owing to extensions in lifespan, with a larger percentage of members living to an older age, but the ND aetiology and pathogenesis are not fully understood, and effective treatments are still lacking. Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis are generally thought to progress as a consequence of genetic susceptibility and environmental influences. Up to now, several environmental triggers have been associated with NDs, and recent studies suggest that some cyanotoxins, produced by cyanobacteria and acting through a variety of molecular mechanisms, are highly neurotoxic, although their roles in neuropathy and particularly in NDs are still controversial. In this review, we summarize the most relevant and recent evidence that points at cyanotoxins as environmental triggers in NDs development.
Collapse
|
12
|
Quinn AW, Phillips CR, Violi JP, Steele JR, Johnson MS, Westerhausen MT, Rodgers KJ. β-Methylamino-L-alanine-induced protein aggregation in vitro and protection by L-serine. Amino Acids 2021; 53:1351-1359. [PMID: 34283312 DOI: 10.1007/s00726-021-03049-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The cyanobacterial non-protein amino acid α-amino-β-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms. Since its discovery, BMAA toxicity has been the subject of many in vivo and in vitro studies. A number of mechanisms of toxicity have been proposed including an agonist effect at glutamate receptors, competition with cysteine for transport system xc_ and other mechanisms capable of generating cellular oxidative stress. In addition, a wide range of studies have reported effects related to disturbances in proteostasis including endoplasmic reticulum stress and activation of the unfolded protein response. In the present studies we examine the effects of BMAA on the ubiquitin-proteasome system (UPS) and on chaperone-mediated autophagy (CMA) by measuring levels of ubiquitinated proteins and lamp2a protein levels in a differentiated neuronal cell line exposed to BMAA. The BMAA induced increases in oxidised proteins and the increase in CMA activity reported could be prevented by co-administration of L-serine but not by the two antioxidants examined. These data provide further evidence of a protective role for L-serine against the deleterious effects of BMAA.
Collapse
Affiliation(s)
- Adam W Quinn
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia
| | - Connor R Phillips
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia
| | - Jake P Violi
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia
| | - Joel R Steele
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia
| | - Michael S Johnson
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia
| | - Mika T Westerhausen
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia.
| |
Collapse
|
13
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Silva DF, Candeias E, Esteves AR, Magalhães JD, Ferreira IL, Nunes-Costa D, Rego AC, Empadinhas N, Cardoso SM. Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer's disease features in cortical neurons. J Neuroinflammation 2020; 17:332. [PMID: 33153477 PMCID: PMC7643281 DOI: 10.1186/s12974-020-02004-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients. Indeed, the consumption of BMAA-enriched foods has been proposed to induce amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), which implicated this microbial metabolite in neurodegeneration mechanisms. METHODS Freshly isolated mitochondria from C57BL/6 mice were treated with BMAA and O2 consumption rates were determined. O2 consumption and glycolysis rates were also measured in mouse primary cortical neuronal cultures. Further, mitochondrial membrane potential and ROS production were evaluated by fluorimetry and the integrity of mitochondrial network was examined by immunofluorescence. Finally, the ability of BMAA to activate neuronal innate immunity was quantified by addressing TLRs (Toll-like receptors) expression, p65 NF-κB translocation into the nucleus, increased expression of NLRP3 (Nod-like receptor 3), and pro-IL-1β. Caspase-1 activity was evaluated using a colorimetric substrate and mature IL-1β levels were also determined by ELISA. RESULTS Treatment with BMAA reduced O2 consumption rates in both isolated mitochondria and in primary cortical cultures, with additional reduced glycolytic rates, decrease mitochondrial potential and increased ROS production. The mitochondrial network was found to be fragmented, which resulted in cardiolipin exposure that stimulated inflammasome NLRP3, reinforced by decreased mitochondrial turnover, as indicated by increased p62 levels. BMAA treatment also activated neuronal extracellular TLR4 and intracellular TLR3, inducing p65 NF-κB translocation into the nucleus and activating the transcription of NLRP3 and pro-IL-1β. Increased caspase-1 activity resulted in elevated levels of mature IL-1β. These alterations in mitochondrial metabolism and inflammation increased Tau phosphorylation and Aβ peptides production, two hallmarks of AD. CONCLUSIONS Here we propose a unifying mechanism for AD neurodegeneration in which a microbial toxin can induce mitochondrial dysfunction and activate neuronal innate immunity, which ultimately results in Tau and Aβ pathology. Our data show that neurons, alone, can mount inflammatory responses, a role previously attributed exclusively to glial cells.
Collapse
Affiliation(s)
- Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal. .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Soto T, Buzzi ED, Rotstein NP, German OL, Politi LE. Damaging effects of BMAA on retina neurons and Müller glial cells. Exp Eye Res 2020; 202:108342. [PMID: 33144094 DOI: 10.1016/j.exer.2020.108342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
B-N-methylamino-L-alanine (BMAA), a cyanotoxin produced by most cyanobacteria, has been proposed to cause long term damages leading to neurodegenerative diseases, including Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) and retinal pathologies. Previous work has shown diverse mechanisms leading to BMAA-induced degeneration; however, the underlying mechanisms of toxicity affecting retina cells are not fully elucidated. We here show that BMAA treatment of rat retina neurons in vitro induced nuclear fragmentation and cell death in both photoreceptors (PHRs) and amacrine neurons, provoking mitochondrial membrane depolarization. Pretreatment with the N-Methyl-D-aspartate (NMDA) receptor antagonist MK-801 prevented BMAA-induced death of amacrine neurons, but not that of PHRs, implying activation of NMDA receptors participated only in amacrine cell death. Noteworthy, BMAA stimulated a selective axonal outgrowth in amacrine neurons, simultaneously promoting growth cone destabilization. BMAA partially decreased the viability of Müller glial cells (MGC), the main glial cell type in the retina, induced marked alterations in their actin cytoskeleton and impaired their capacity to protect retinal neurons. BMAA also induced cell death and promoted axonal outgrowth in differentiated rat pheochromocytoma (PC12) cells, implying these effects were not limited to amacrine neurons. These results suggest that BMAA is toxic for retina neurons and MGC and point to the involvement of NMDA receptors in amacrine cell death, providing new insight into the mechanisms involved in BMAA neurotoxic effects in the retina.
Collapse
Affiliation(s)
- Tamara Soto
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional Del Sur (UNS)-CONICET, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional Del Sur (UNS)-CONICET, Argentina
| | - O Lorena German
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional Del Sur (UNS)-CONICET, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Violi JP, Bishop DP, Padula MP, Steele JR, Rodgers KJ. Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Yan B, Liu Z, Liu Y, Huang R, Xu Y, Liu D, Cui F, Shi W. Effects and mechanism on the removal of neurotoxin β-N-methylamino-l-alanine (BMAA) by chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135513. [PMID: 31761374 DOI: 10.1016/j.scitotenv.2019.135513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
β-N-Methylamino-l-alanine (BMAA), a new cyanobacterial toxin, is found in different aquatic ecosystems worldwide and is to threaten the human nervous system. Therefore, it is important for water plants to develop feasible methods to counter the effects of BMAA. In this study, the removal of BMAA by chlorine, as well as its intermediate products, at different pH values and the mechanism of pH on the removal BMAA were investigated. The results showed that the chlorination of BMAA is in accordance with the second-order kinetics model. The reaction rate of chlorinated BMAA increased with the increase in the concentration of chlorine. The pH of the solution significantly affected the reaction rate. The apparent kinetic constant (kapp) decreased from 6.00 × 103 M-1·min-1 to 35.5 M-1·min-1 when the pH increased from 4.5 to 9 in the chlorine concentration of 32.23 μM. It is probable that the species distribution and proportion of BMAA and chlorine at different pH values were the main causes of this phenomenon. Additionally, the chlorination reaction consisted of four elementary reactions and hydrogen ions were beneficial to the reaction. The temperature also affected the reaction rate and the activation energy of the reaction was 16.6 ± 1.99 kJ·M-1. A variety of degradation products were detected and the path of degradation was speculated. Chlorination, dechlorination, and decarboxylation were the main processes of oxidative degradation. Furthermore, the composition of the degradation products was the same at different pH values.
Collapse
Affiliation(s)
- Boyin Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiquan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Ying Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongpeng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
18
|
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration. Front Aging Neurosci 2020; 12:26. [PMID: 32317956 PMCID: PMC7019015 DOI: 10.3389/fnagi.2020.00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases. However, the exact molecular mechanisms of neurotoxicity remain to be elucidated in detail. Although BMAA is commonly detected in its free form, complex BMAA-containing molecules have also been identified such as the paenilamicins, produced by an insect gut bacterial pathogen. On the other hand, production of BMAA or BMAA-containing molecules by members of the human gut microbiota, for example by non-photosynthetic cyanobacteria, the Melainabacteria, remains only hypothetical. In any case, should BMAA reach the gut it may interact with cells of the mucosal immune system and neurons of the enteric nervous system (ENS) and possibly target the mitochondria. Here, we review the available evidence and hint on possible mechanisms by which chronic exposure to dietary sources of this microbial neurotoxin may drive protein misfolding and mitochondrial dysfunction with concomitant activation of innate immune responses, chronic low-grade gut inflammation, and ultimately the neurodegenerative features observed across the gut-brain axis in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniela Nunes-Costa
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - João Duarte Magalhães
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - Maria G-Fernandes
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
| | - Sandra Morais Cardoso
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute of Cellular and Molecular Biology,
Faculty of Medicine, University of Coimbra,
Coimbra, Portugal
| | - Nuno Empadinhas
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute for Interdisciplinary Research
(IIIUC), University of Coimbra, Coimbra,
Portugal
| |
Collapse
|
19
|
Angiopoietin-1 and ανβ3 integrin peptide promote the therapeutic effects of L-serine in an amyotrophic lateral sclerosis/Parkinsonism dementia complex model. Aging (Albany NY) 2019; 10:3507-3527. [PMID: 30476904 PMCID: PMC6286852 DOI: 10.18632/aging.101661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult disorder of neurodegeneration that manifests as the destruction of upper and lower motor neurons. Beta-N-methylamino-L-alanine (L-BMAA), an amino acid not present in proteins, was found to cause intraneuronal protein misfolding and to induce ALS/Parkinsonism dementia complex (PDC), which presents symptoms analogous to those of Alzheimer’s-like dementia and Parkinsonism. L-serine suppresses the erroneous incorporation of L-BMAA into proteins in the human nervous system. In this study, angiopoietin-1, an endothelial growth factor crucial for vascular development and angiogenesis, and the integrin αvβ3 binding peptide C16, which inhibits inflammatory cell infiltration, were utilized to improve the local microenvironment within the central nervous system of an ALS/PDC rodent model by minimizing inflammation. Our results revealed that L-serine application yielded better effects than C16+ angiopoietin-1 treatment alone for alleviating apoptotic and autophagic changes and improving cognition and electrophysiological dysfunction, but not for improving the inflammatory micro-environment in the central nerve system, while further advances in attenuating the functional disability and pathological impairment induced by L-BMAA could be achieved by co-treatment with C16 and angiopoietin-1 in addition to L-serine. Therefore, C16+ angiopoietin-1 could be beneficial as a supplement to promote the effects of L-serine treatment.
Collapse
|
20
|
Gunatilake S, Seneff S, Orlando L. Glyphosate's Synergistic Toxicity in Combination with Other Factors as a Cause of Chronic Kidney Disease of Unknown Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2734. [PMID: 31370256 PMCID: PMC6695815 DOI: 10.3390/ijerph16152734] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is a global epidemic. Sri Lanka has experienced a doubling of the disease every 4 or 5 years since it was first identified in the North Central province in the mid-1990s. The disease primarily affects people in agricultural regions who are missing the commonly known risk factors for CKD. Sri Lanka is not alone: health workers have reported prevalence of CKDu in Mexico, Nicaragua, El Salvador, and the state of Andhra Pradesh in India. A global search for the cause of CKDu has not identified a single factor, but rather many factors that may contribute to the etiology of the disease. Some of these factors include heat stroke leading to dehydration, toxic metals such as cadmium and arsenic, fluoride, low selenium, toxigenic cyanobacteria, nutritionally deficient diet and mycotoxins from mold exposure. Furthermore, exposure to agrichemicals, particularly glyphosate and paraquat, are likely compounding factors, and may be the primary factors. Here, we argue that glyphosate in particular is working synergistically with most of the other factors to increase toxic effects. We propose, further, that glyphosate causes insidious harm through its action as an amino acid analogue of glycine, and that this interferes with natural protective mechanisms against other exposures. Glyphosate's synergistic health effects in combination with exposure to other pollutants, in particular paraquat, and physical labor in the ubiquitous high temperatures of lowland tropical regions, could result in renal damage consistent with CKDu in Sri Lanka.
Collapse
Affiliation(s)
- Sarath Gunatilake
- Health Science Department, California State University Long Beach, Long Beach, CA 90840, USA
| | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Laura Orlando
- Environmental Health Department, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
21
|
Cell death and mitochondrial dysfunction induced by the dietary non-proteinogenic amino acid L-azetidine-2-carboxylic acid (Aze). Amino Acids 2019; 51:1221-1232. [PMID: 31302779 DOI: 10.1007/s00726-019-02763-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
In addition to the 20 protein amino acids that are vital to human health, hundreds of naturally occurring amino acids, known as non-proteinogenic amino acids (NPAAs), exist and can enter the human food chain. Some NPAAs are toxic through their ability to mimic protein amino acids and this property is utilised by NPAA-containing plants to inhibit the growth of other plants or kill herbivores. The NPAA L-azetidine-2-carboxylic acid (Aze) enters the food chain through the use of sugar beet (Beta vulgaris) by-products as feed in the livestock industry and may also be found in sugar beet by-product fibre supplements. Aze mimics the protein amino acid L-proline and readily misincorporates into proteins. In light of this, we examined the toxicity of Aze to mammalian cells in vitro. We showed decreased viability in Aze-exposed cells with both apoptotic and necrotic cell death. This was accompanied by alterations in endosomal-lysosomal activity, changes to mitochondrial morphology and a significant decline in mitochondrial function. In summary, the results show that Aze exposure can lead to deleterious effects on human neuron-like cells and highlight the importance of monitoring human Aze consumption via the food chain.
Collapse
|
22
|
Main BJ, Bowling LC, Padula MP, Bishop DP, Mitrovic SM, Guillemin GJ, Rodgers KJ. Detection of the suspected neurotoxin β-methylamino-l-alanine (BMAA) in cyanobacterial blooms from multiple water bodies in Eastern Australia. HARMFUL ALGAE 2018; 74:10-18. [PMID: 29724339 DOI: 10.1016/j.hal.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/09/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The emerging toxin β-methylamino-l-alanine (BMAA) has been linked to the development of a number of neurodegenerative diseases in humans including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease. BMAA has been found to be produced by a range of cyanobacteria, diatoms, and dinoflagellates worldwide, and is present in freshwater, saltwater, and terrestrial ecosystems. Surface scum samples were collected from waterways in rural and urban New South Wales, Australia and algal species identified. Reverse phase liquid chromatography-tandem mass spectrometry was used to analyse sixteen cyanobacterial scum for the presence of BMAA as well as its toxic structural isomer 2,4-diaminobutyric acid (2,4-DAB). BMAA was detected in ten of the samples analysed, and 2,4-DAB in all sixteen. The presence of these toxins in water used for agriculture raises concerns for public health and food security in Australia.
Collapse
Affiliation(s)
- Brendan J Main
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Lee C Bowling
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia; DPI Water, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - David P Bishop
- Elemental Bio-imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Gilles J Guillemin
- MND Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
23
|
Contardo-Jara V, Schwanemann T, Esterhuizen-Londt M, Pflugmacher S. Protein association of β-N-methylamino-L-alanine in Triticum aestivum via irrigation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:731-739. [DOI: 10.1080/19440049.2018.1427283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Valeska Contardo-Jara
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Torsten Schwanemann
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Maranda Esterhuizen-Londt
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Stephan Pflugmacher
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe (KIST), Saarbrücken, Germany
| |
Collapse
|
24
|
Main BJ, Italiano CJ, Rodgers KJ. Investigation of the interaction of β-methylamino-L-alanine with eukaryotic and prokaryotic proteins. Amino Acids 2017; 50:397-407. [PMID: 29235019 DOI: 10.1007/s00726-017-2525-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
There is a strong body of evidence linking the non-protein amino acid (NPAA) β-methylamino-L-alanine (BMAA) to the development of a number of neurodegenerative diseases. BMAA has been found globally, is produced by a number of organisms including cyanobacteria, diatoms, and dinoflagellates; and has been shown to biomagnify through trophic levels. The role of BMAA in neurodegenerative disease is highlighted by its presence in the brains of a number of neurodegenerative disease patients, where it was found in a protein-bound form. We have previously shown that BMAA is bound to cell proteins, and results in the upregulation of the unfolded protein response, an endoplasmic reticulum stress response activated by the presence of misfolded proteins within the cell. Structurally aberrant proteins are features of a number of neurodegenerative diseases, and further investigation of how BMAA interacts with proteins is crucial to our understanding of its toxicity. Here we use radiolabelled BMAA to investigate the interaction and binding of BMAA to eukaryotic and prokaryotic proteins. We found differences in the presence and distribution of protein-bound BMAA between E. coli and neuroblastoma cells, with an increase in binding over time only seen in the eukaryotic cells. We also found that BMAA was unable to bind to pure proteins, or cell lysate in native or denaturing conditions, indicating that biological processing is required for BMAA to bind to proteins.
Collapse
Affiliation(s)
- Brendan J Main
- School of Life Sciences, University of Technology Sydney, Broadway, Building 4, Level 7, ROOM 340. Thomas Street, Ultimo, NSW, 2007, Australia
| | - Carly J Italiano
- School of Life Sciences, University of Technology Sydney, Broadway, Building 4, Level 7, ROOM 340. Thomas Street, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Broadway, Building 4, Level 7, ROOM 340. Thomas Street, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
25
|
Roy U, Conklin L, Schiller J, Matysik J, Berry JP, Alia A. Metabolic profiling of zebrafish (Danio rerio) embryos by NMR spectroscopy reveals multifaceted toxicity of β-methylamino-L-alanine (BMAA). Sci Rep 2017; 7:17305. [PMID: 29230019 PMCID: PMC5725574 DOI: 10.1038/s41598-017-17409-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
β-methylamino-L-alanine (BMAA) has been linked to several interrelated neurodegenerative diseases. Despite considerable research, specific contributions of BMAA toxicity to neurodegenerative diseases remain to be fully resolved. In the present study, we utilized state-of-the-art high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), applied to intact zebrafish (Danio rerio) embryos, as a model of vertebrate development, to elucidate changes in metabolic profiles associated with BMAA exposure. Complemented by several alternative analytical approaches (i.e., in vivo visualization and in vitro assay), HRMAS NMR identified robust and dose-dependent effect of BMAA on several relevant metabolic pathways suggesting a multifaceted toxicity of BMAA including: (1) localized production of reactive oxygen species (ROS), in the developing brain, consistent with excitotoxicity; (2) decreased protective capacity against excitotoxicity and oxidative stress including reduced taurine and glutathione; (3) inhibition of several developmentally stereotypical energetic and metabolic transitions, i.e., metabolic reprogramming; and (4) inhibition of lipid biosynthetic pathways. Matrix-assisted laser desorption time-of-flight (MALDI-ToF) mass spectrometry further identified specific effects on phospholipids linked to both neural development and neurodegeneration. Taken together, a unified model of the neurodevelopmental toxicity of BMAA in the zebrafish embryo is presented in relation to the potential contribution of BMAA to neurodegenerative disease.
Collapse
Affiliation(s)
- Upasana Roy
- Institute for Medical Physics and Biophysics, University of Leipzig, D-04107, Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, D-04103, Leipzig, Germany
| | - Laura Conklin
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, 33181, USA
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, University of Leipzig, D-04107, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, D-04103, Leipzig, Germany
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, 33181, USA.
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, D-04107, Leipzig, Germany. .,Leiden Institute of Chemistry, 2333, Leiden, The Netherlands.
| |
Collapse
|
26
|
Regueiro J, Negreira N, Carreira-Casais A, Pérez-Lamela C, Simal-Gándara J. Dietary exposure and neurotoxicity of the environmental free and bound toxin β- N -methylamino- l -alanine. Food Res Int 2017; 100:1-13. [DOI: 10.1016/j.foodres.2017.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
27
|
Main BJ, Rodgers KJ. Assessing the Combined Toxicity of BMAA and Its Isomers 2,4-DAB and AEG In Vitro Using Human Neuroblastoma Cells. Neurotox Res 2017. [PMID: 28634653 DOI: 10.1007/s12640-017-9763-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The non-protein amino acid (NPAA) ß-methylamino-L-alanine (BMAA) is produced by a diverse range of cyanobacteria, diatoms and dinoflagellates, and is present in both aquatic and terrestrial ecosystems globally. Exposure to BMAA has been implicated in the development of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD). BMAA is often found in nature along with its structural isomers 2,4-diaminobutyric acid (2,4-DAB) and aminoethylglycine (AEG); however, the toxicity of these NPAAs in combination has not been examined. We have previously demonstrated that BMAA induces endoplasmic reticulum (ER) stress and increases caspase and cathepsin activity in human neuroblastoma cells (SH-SY5Y), effects consistent with proteotoxic stress due to disturbances in protein synthesis, folding or turnover. The current study investigates whether 2,4-DAB and AEG share a similar mechanism of toxicity to BMAA, and if simultaneous exposure of cells to BMAA and its isomers results in increased toxicity in vitro. We show that a 48-h treatment with both 500 μM BMAA and 2,4-DAB decreases cell viability in vitro whereas AEG was not cytotoxic under the same conditions. Treatment of SH-SY5Y cells with 2,4-DAB did not increase expression of ER stress markers. Combined treatment of cells with BMAA and 2,4-DAB resulted in increased caspase activity and increased apoptosis above that of BMAA or 2,4-DAB on their own. These results suggest that 2,4-DAB does not share the same mechanism of toxicity as BMAA but the presence of 2,4-DAB increases the toxicity of BMAA to human cells in vitro.
Collapse
Affiliation(s)
- Brendan J Main
- School of Life Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
28
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
29
|
Banack SA, Cox PA. Creating a Simian Model of Guam ALS/PDC Which Reflects Chamorro Lifetime BMAA Exposures. Neurotox Res 2017; 33:24-32. [PMID: 28478528 DOI: 10.1007/s12640-017-9745-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/03/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
Abstract
The theory that β-N-methylamino-L-alanine (BMAA), a cyanobacterial toxin, contaminates traditional food supplies of the Chamorro people of Guam is supported by the recent finding that chronic dietary exposure to L-BMAA in vervets (Chlorocebus sabaeus) triggers the formation of neurofibrillary tangles (NFT) and β-amyloid plaques in the brain. In the first experiment, we found that all four vervets receiving a 210 mg/kg dose for 140 days developed NFT and sparse amyloid deposits. In the second experiment, all eight vervets receiving a 210 mg/kg dose for 140 days developed NFT and amyloid deposits, as well as all eight vervets that received only 21 mg/kg. Based on dietary surveys of the Chamorro people, we estimated lifetime chronic BMAA exposure at a high and a low level: 1) adult male Chamorros eating two flying foxes per month plus one 30 g serving of cycad flour per week; and 2) adult male Chamorros eating one 30 g serving of cycad flour per day combined with the consumption of eight flying foxes per month. The resultant cumulative lifetime Chamorro exposures ranged from 1 to 41 g/kg and are comparable to the total lifetime vervet exposures in our experiments of 2 and 22 g/kg, respectively. Furthermore, measured protein-bound BMAA concentrations of vervets fed L-BMAA powder are comparable to measured protein-bound BMAA concentrations in postmortem brain tissues of Chamorros who died with ALS/PDC.
Collapse
Affiliation(s)
- Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA.
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
30
|
Engskog MKR, Ersson L, Haglöf J, Arvidsson T, Pettersson C, Brittebo E. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling. Amino Acids 2017; 49:905-919. [PMID: 28161796 PMCID: PMC5383692 DOI: 10.1007/s00726-017-2391-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
Abstract
β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.
Collapse
Affiliation(s)
- Mikael K R Engskog
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden.
| | - Lisa Ersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 23, Uppsala, Sweden
| | - Jakob Haglöf
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Torbjörn Arvidsson
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden.,Medical Product Agency, Box 26, Dag Hammarskjölds väg 42, 751 03, Uppsala, Sweden
| | - Curt Pettersson
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 23, Uppsala, Sweden
| |
Collapse
|
31
|
Li A, Song J, Hu Y, Deng L, Ding L, Li M. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA) in the Marine Benthic Ecosystem. Mar Drugs 2016; 14:md14110202. [PMID: 27827914 PMCID: PMC5128745 DOI: 10.3390/md14110202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/01/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB) and N-2(aminoethyl)glycine (AEG) in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer) method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g-1 wet weight) were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68) with no species-specific or regional differences (0.051~2.65 μg·g-1 wet weight). No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jialiang Song
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Longji Deng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Ling Ding
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Meihui Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
32
|
Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 2016; 56:269-283. [DOI: 10.1016/j.neuro.2016.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
33
|
Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA). Sci Rep 2016; 6:29631. [PMID: 27404450 PMCID: PMC4940735 DOI: 10.1038/srep29631] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression.
Collapse
|