1
|
Memariani H, Memariani M. New Frontiers in Fighting Mycobacterial Infections: Venom-Derived Peptides. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10455-z. [PMID: 39828882 DOI: 10.1007/s12602-025-10455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Notwithstanding the indefatigable endeavors to develop effective anti-mycobacterial therapies, mycobacterial infections still present a tough problem for medicine today. The problem is further complicated by the disquieting surge of drug-resistant mycobacterial pathogens, which considerably narrows the existing therapeutic options. Thus, there is a genuine need to discover novel anti-mycobacterial drugs. Animal venoms are considered a treasure trove of structurally variable and biologically active peptides, which may hold promise for therapeutic applications. Over the past two decades, abundant evidence has been amassed regarding anti-mycobacterial effects of various peptides derived from the venoms of honeybees, wasps, scorpions, pseudoscorpions, cone snails, and snakes. This review intends to consolidate the state-of-the-art knowledge on the anti-mycobacterial peptides of animal venoms and to sketch potentially fruitful directions for future investigations. The available data indicate that micromolar concentrations of particular venom-derived peptides can effectively inhibit the in vitro growth of Mycobacterium tuberculosis and non-tuberculous mycobacteria. The proposed mechanisms of action of venom-derived peptides include reduced activity of plasma membrane ATPase, depolarization of the cell membrane, disruption of the cell wall, and increased generation of reactive oxygen species. Interestingly, administering certain peptides (≤ 2 mg/kg body weight) through daily intraperitoneal injections to mice for 8 consecutive days resulted in lower levels of mycobacterial infections and inflammation, hitting two targets with one arrow. Indubitably, such peptides can usher in new possibilities for the prevention and treatment of recalcitrant mycobacterial infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
3
|
Galante P, Campos GAA, Moser JCG, Martins DB, Dos Santos Cabrera MP, Rangel M, Coelho LC, Simon KS, Amado VM, de A I Muller J, Koehbach J, Lohman RJ, Cabot PJ, Vetter I, Craik DJ, Toffoli-Kadri MC, Monge-Fuentes V, Goulart JT, Schwartz EF, Silva LP, Bocca AL, Mortari MR. Exploring the therapeutic potential of an antinociceptive and anti-inflammatory peptide from wasp venom. Sci Rep 2023; 13:12491. [PMID: 37528129 PMCID: PMC10393941 DOI: 10.1038/s41598-023-38828-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
Animal venoms are rich sources of neuroactive compounds, including anti-inflammatory, antiepileptic, and antinociceptive molecules. Our study identified a protonectin peptide from the wasp Parachartergus fraternus' venom using mass spectrometry and cDNA library construction. Using this peptide as a template, we designed a new peptide, protonectin-F, which exhibited higher antinociceptive activity and less motor impairment compared to protonectin. In drug interaction experiments with naloxone and AM251, Protonectin-F's activity was decreased by opioid and cannabinoid antagonism, two critical antinociception pathways. Further experiments revealed that this effect is most likely not induced by direct action on receptors but by activation of the descending pain control pathway. We noted that protonectin-F induced less tolerance in mice after repeated administration than morphine. Protonectin-F was also able to decrease TNF-α production in vitro and modulate the inflammatory response, which can further contribute to its antinociceptive activity. These findings suggest that protonectin-F may be a potential molecule for developing drugs to treat pain disorders with fewer adverse effects. Our results reinforce the biotechnological importance of animal venom for developing new molecules of clinical interest.
Collapse
Affiliation(s)
- Priscilla Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Gabriel A A Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jacqueline C G Moser
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Danubia B Martins
- Department of Physics, IBILCE, São Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Sao Paulo, SP, 05503-900, Brazil
| | - Luiza C Coelho
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Karina S Simon
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Veronica M Amado
- Faculty of Medicine and University Hospital of Brasília, University of Brasilia, Brasilia, DF, 79910-900, Brazil
| | - Jessica de A I Muller
- Laboratory of Pharmacology and Inflammation FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rink-Jan Lohman
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Monica C Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jair T Goulart
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Elisabeth F Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Luciano P Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70770917, Brazil
| | - Anamelia L Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Ye X, Liu X, Luo X, Sun F, Qin C, Ding L, Zhu W, Zhang H, Zhou H, Chen Z. Characterization of the Molecular Diversity and Degranulation Activity of Mastoparan Family Peptides from Wasp Venoms. Toxins (Basel) 2023; 15:toxins15050331. [PMID: 37235365 DOI: 10.3390/toxins15050331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Wasp stings have become an increasingly serious public health problem because of their high incidence and mortality rates in various countries and regions. Mastoparan family peptides are the most abundant natural peptides in hornet venoms and solitary wasp venom. However, there is a lack of systematic and comprehensive studies on mastoparan family peptides from wasp venoms. In our study, for the first time, we evaluated the molecular diversity of 55 wasp mastoparan family peptides from wasp venoms and divided them into four major subfamilies. Then, we established a wasp peptide library containing all 55 known mastoparan family peptides by chemical synthesis and C-terminal amidation modification, and we systematically evaluated their degranulation activities in two mast cell lines, namely the RBL-2H3 and P815 cell lines. The results showed that among the 55 mastoparans, 35 mastoparans could significantly induce mast cell degranulation, 7 mastoparans had modest mast cell degranulation activity, and 13 mastoparans had little mast cell degranulation activity, suggesting functional variation in mastoparan family peptides from wasp venoms. Structure-function relationship studies found that the composition of amino acids in the hydrophobic face and amidation in the C-terminal region are critical for the degranulation activity of mastoparan family peptides from wasp venoms. Our research will lay a theoretical foundation for studying the mechanism underlying the degranulation activity of wasp mastoparans and provide new evidence to support the molecular design and molecular optimization of natural mastoparan peptides from wasp venoms in the future.
Collapse
Affiliation(s)
- Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chenhu Qin
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huajun Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Haimei Zhou
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
5
|
Barragán-Zarate GS, Lagunez-Rivera L, Solano R, Carranza-Álvarez C, Hernández-Benavides DM, Vilarem G. Validation of the traditional medicinal use of a Mexican endemic orchid ( Prosthechea karwinskii) through UPLC-ESI-qTOF-MS/MS characterization of its bioactive compounds. Heliyon 2022; 8:e09867. [PMID: 35847621 PMCID: PMC9284392 DOI: 10.1016/j.heliyon.2022.e09867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ethnopharmacological relevance The orchid Prosthechea karwinskii is a medicinal orchid in Oaxaca, Mexico, used to treat diabetes, cough, wounds, and burns, prevent miscarriage and assist in labor. Each part of the plant (leaves, pseudobulbs, or flowers) is used by healers for certain treatment conditions, indicating that each part has different biocompounds with specific pharmacological activity. Aim of the study To characterize the biocompounds in extracts from leaves, pseudobulbs, and flowers of P. karwinskii and evaluate their ROS inhibition capacity to associate it with medicinal uses. Materials and methods The compounds present in extracts from leaves, pseudobulbs, and flowers of P. karwinskii were identified by UPLC-ESI-qTOF-MS/MS. The chemical differentiation of each extract was tested by principal component analysis (PCA) using compound intensity values. For each extract, total phenol and flavonoid contents were quantified. Their antioxidant capacity was evaluated ex vivo by inhibition of ROS with DCFH-DA and in vitro with DPPH radical. Results Based on the PCA, it was observed that some compounds were completely separated from others according to the correlation that they presented. The compounds common to all three plant parts were quinic, malic, succinic, azelaic, and pinellic acids. Among the compounds identified, two were exclusive to leaves, four to pseudobulbs, and ten to flowers. Some of the identified compounds have well-known antioxidant activity. The leaves had the highest content of total phenols and flavonoids, and the highest in vitro and ex vivo antioxidant capacity. A strong correlation was observed between phenol and flavonoid contents, and antioxidant capacity ex vivo and in vitro. Conclusions It was found that the bioactive compounds and antioxidant capacity of each part of the plant were associated with its traditional medicinal use. A pharmacological potential was also found in P. karwinskii for further biological studies because of the type of compounds it contained. Compounds common and specific to each plant part were identified by UPLC-ESI-qTOF-MS/MS. The biological activities reported for the identified compounds validate the traditional medicinal use of P. karwinskii. Embelin (inflammation) is exclusive to leaves, phloridzin (diabetes) to pseudobulbs, and abscisic acid (in labor) to flowers. In the literature, the antioxidant compounds are rutin, kaempferol-3-O-rutinoside, embelin, guanosine, and azelaic acid. Pearson's correlation coefficients indicate that a higher content of phenols and flavonoids has a higher antioxidant capacity.
Collapse
Affiliation(s)
- Gabriela Soledad Barragán-Zarate
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230, Oaxaca, Mexico
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230, Oaxaca, Mexico
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230, Oaxaca, Mexico
| | - Candy Carranza-Álvarez
- Unidad Académica Multidisciplinaria de la Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Frac. Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Diego Manuel Hernández-Benavides
- Unidad Académica Multidisciplinaria de la Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Frac. Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Gerard Vilarem
- Laboratoire de Chimie Agro-Industrielle, ENSIACET, 4 Allée Emile Monso, BP 44362, 31030, Toulouse, France
| |
Collapse
|
6
|
de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci 2022; 9:824989. [PMID: 35813822 PMCID: PMC9263278 DOI: 10.3389/fmolb.2022.824989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Mário Sérgio Palma
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Mariana S. Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- *Correspondence: Mariana S. Castro,
| |
Collapse
|
7
|
Muller JAI, Chan LY, Toffoli-Kadri MC, Mortari MR, Craik DJ, Koehbach J. Antinociceptive peptides from venomous arthropods. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jessica A. I. Muller
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Monica C. Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Marcia R. Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Brasilia, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
8
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
9
|
Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021; 13:toxins13030206. [PMID: 33809401 PMCID: PMC8000949 DOI: 10.3390/toxins13030206] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
Collapse
|
10
|
Muller JAI, Lawrence N, Chan LY, Harvey PJ, Elliott AG, Blaskovich MAT, Gonçalves JC, Galante P, Mortari MR, Toffoli-Kadri MC, Koehbach J, Craik DJ. Antimicrobial and Anticancer Properties of Synthetic Peptides Derived from the Wasp Parachartergus fraternus. Chembiochem 2021; 22:1415-1423. [PMID: 33244888 DOI: 10.1002/cbic.202000716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Agelaia-MPI and protonectin are antimicrobial peptides isolated from the wasp Parachartergus fraternus that show antimicrobial and neuroactive activities. Previously, two analogues of these peptides, neuroVAL and protonectin-F, were designed to reduce nonspecific toxicity and improve potency. Here, the three-dimensional structures of neuroVAL, protonectin and protonectin-F were determined by using circular dichroism and NMR spectroscopy. Antibacterial, antifungal, cytotoxic and hemolytic activities were tested for the parent peptides and analogues. All peptides showed moderate antimicrobial activity against Gram-positive bacteria, with agelaia-MPI being the most active. Protonectin and protonectin-F were found to be toxic to cancerous and noncancerous cell lines. Internalization experiments revealed that these peptides accumulate inside both cell types. By contrast, neuroVAL was nontoxic to all tested cells and was able to enter cells without accumulating. In summary, neuroVAL has potential as a nontoxic cell-penetrating peptide, while protonectin-F needs further modification to realize its potential as an antitumor peptide.
Collapse
Affiliation(s)
- Jessica A I Muller
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, Centre for Superbug Solutions, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, Centre for Superbug Solutions, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jacqueline C Gonçalves
- Laboratory of Neuropharmacology, IB/University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Priscilla Galante
- Laboratory of Neuropharmacology, IB/University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Marcia R Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Federal District, Brasilia, 70910-900, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
11
|
Lopes KS, Quintanilha MVT, de Souza ACB, Zamudio-Zuñiga F, Possani LD, Mortari MR. Antiseizure potential of peptides from the venom of social wasp Chartergellus communis against chemically-induced seizures. Toxicon 2021; 194:23-36. [PMID: 33610635 DOI: 10.1016/j.toxicon.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Epilepsy is one of the most common neurological diseases in the world. The objective of this research was to investigate a new peptide from the venom of the social wasp Chartergellus communis useful to the study or pharmacotherapy of epilepsy. The wasps were collected, and their venom was extracted. Afterward, the steps of fractionation, sequencing, and identification were carried out to obtain four peptides. These molecules were synthesized for behavioral evaluation tests and electroencephalographic assays to determine their antiseizure potential (induction of acute seizures using the chemical compounds, pentylenetetrazole - PTZ, and pilocarpine - PILO) and analysis of neuropharmacological profile (general spontaneous activity and alteration in motor coordination). Chartergellus-CP1 (i.c.v. - 3.0 μg/animal) caused beneficial alterations in some of the parameters evaluated in both models: PTZ (latency and duration of maximum seizures) and PILO (latency and duration of, and protection against, maximum seizures, and reduction of the median of the seizure scores. When evaluated in 3 doses in the seizure model induced by PILO, the dose of 3.0 μg/animal protected the animals against seizures, with an estimated ED50 of 1.49 μg/animal. Electroencephalographic evaluation of Chartergellus-CP1 showed an improvement in latency, quantity, and percentage of protection against generalized electroencephalographic seizures in the PILO model. Further, Chartergellus-CP1 did not cause adverse effects on general spontaneous activity and motor coordination of animals. This study demonstrated how compounds isolated from wasps' venom may be important resources in the search for new drugs. Such compounds can be considered valuable therapeutic and biotechnological tools for the study and future treatment of epileptic disorders. In this context, a peptide that is potentially useful for epilepsy pharmacotherapy was identified in the venom of C. communis.
Collapse
Affiliation(s)
- Kamila Soares Lopes
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Fernando Zamudio-Zuñiga
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Morelos, Mexico
| | - Lourival Domingos Possani
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Morelos, Mexico
| | - Márcia Renata Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
12
|
Pro-inflammatory response induced by the venom of Parachartergus fraternus wasp. Toxicon 2020; 190:11-19. [PMID: 33290790 DOI: 10.1016/j.toxicon.2020.11.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
The sting of different wasp species triggers local and systemic reactions in victims that can lead to death. Parachartergus fraternus is responsible for frequent accidents in Latin America; however, few studies have been conducted on this insect and its venom. In this study, the inflammatory process induced by the venom of the P. fraternus wasp (Pfv; 100, 200, and 400 μg/kg) was characterized. Mice were used to assess paw edema, vascular permeability, mast cell degranulation, leukocyte influx, nitric oxide (NO) production, expression of inflammatory genes, and histopathological changes. Pfv triggered edema formation with a peak dose of 200 μg/kg at 10 min. There was an increase in permeability in all periods and doses evaluated, with no differences between them. The 200 μg/kg dose induced mast cell degranulation in all periods, with a peak at 15 min. This same dose induced leukocyte influx with a predominance of mononuclear cells and triggered a peak in NO production in the 12th hour. The increase in COX-2, iNOS, and IFN-γ mRNA expression occurred after 1 and 6 h, and there was an increase in IL-10 expression after 48 h. In addition, Pfv triggered edema and induced an influx of macrophages and mast cells into the injection site. Therefore, Pfv induces an inflammatory process from the first 5 min of inoculation that can persist for up to 48 h.
Collapse
|
13
|
Fraternine, a Novel Wasp Peptide, Protects against Motor Impairments in 6-OHDA Model of Parkinsonism. Toxins (Basel) 2020; 12:toxins12090550. [PMID: 32867207 PMCID: PMC7551070 DOI: 10.3390/toxins12090550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that affects the Central Nervous System (CNS). Insect venoms show high molecular variability and selectivity in the CNS of mammals and present potential for the development of new drugs for the treatment of PD. In this study, we isolated and identified a component of the venom of the social wasp Parachartergus fraternus and evaluated its neuroprotective activity in the murine model of PD. For this purpose, the venom was filtered and separated through HPLC; fractions were analyzed through mass spectrometry and the active fraction was identified as a novel peptide, called Fraternine. We performed two behavioral tests to evaluate motor discoordination, as well as an apomorphine-induced rotation test. We also conducted an immunohistochemical assay to assess protection in TH+ neurons in the Substantia Nigra (SN) region. Group treated with 10 μg/animal of Fraternine remained longer in the rotarod compared to the lesioned group. In the apomorphine test, Fraternine decreased the number of rotations between treatments. This dose also inhibited dopaminergic neuronal loss, as indicated by immunohistochemical analysis. This study identified a novel peptide able to prevent the death of dopaminergic neurons of the SN and recover motor deficit in a 6-OHDA-induced murine model of PD.
Collapse
|
14
|
Pharmacological Characterization of Mouse Hind Paw Edema Induced by Parachartergus fraternus Venom. Inflammation 2019; 42:2011-2019. [DOI: 10.1007/s10753-019-01062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Syed H, Tauseef M, Ahmad Z. A connection between antimicrobial properties of venom peptides and microbial ATP synthase. Int J Biol Macromol 2018; 119:23-31. [DOI: 10.1016/j.ijbiomac.2018.07.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
|
16
|
Wang Y, Li X, Yang M, Wu C, Zou Z, Tang J, Yang X. Centipede venom peptide SsmTX-I with two intramolecular disulfide bonds shows analgesic activities in animal models. J Pept Sci 2017; 23:384-391. [PMID: 28247497 DOI: 10.1002/psc.2988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Abstract
Pain is a major symptom of many diseases and results in enormous pressures on human body or society. Currently, clinically used analgesic drugs, including opioids and nonsteroidal anti-inflammatory drugs, have adverse reactions, and thus, the development of new types of analgesic drug candidates is urgently needed. Animal venom peptides have proven to have potential as new types of analgesic medicine. In this research, we describe the isolation and characterization of an analgesic peptide from the crude venom of centipede, Scolopendra subspinipes mutilans. The amino acid sequence of this peptide was identical with SsmTX-I that was previously reported as a specific Kv2.1 ion channel blocker. Our results revealed that SsmTX-I was produced by posttranslational processing of a 73-residue prepropeptide. The intramolecular disulfide bridge motifs of SsmTX-I was Cys1-Cys3 and Cys2-Cys4. Functional assay revealed that SsmTX-I showed potential analgesic activities in formalin-induced paw licking, thermal pain, and acetic acid-induced abdominal writhing mice models. Our research provides the first report of cDNA sequences, disulfide motif, successful synthesis, and analgesic potential of SsmTX-I for the development of pain-killing drugs. It indicates that centipede peptide toxins could be a treasure trove for the search of novel analgesic drug candidates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ying Wang
- Ethic Drug Screening and Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities, Kunming, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Meifeng Yang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Chunyun Wu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Zhirong Zou
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|