1
|
Mohammad Hasani S, Ghafouri E, Kouhpayeh S, Amerizadeh F, Rahimmanesh I, Amirkhani Z, Khanahmad H. Phage based vaccine: A novel strategy in prevention and treatment. Heliyon 2023; 9:e19925. [PMID: 37809683 PMCID: PMC10559356 DOI: 10.1016/j.heliyon.2023.e19925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The vaccine was first developed in 1796 by a British physician, Edward Jenner, against the smallpox virus. This invention revolutionized medical science and saved lives around the world. The production of effective vaccines requires dominant immune epitopes to elicit a robust immune response. Thus, applying bacteriophages has attracted the attention of many researchers because of their advantages in vaccine design and development. Bacteriophages are not infectious to humans and are unlikely to bind to cellular receptors and activate signaling pathways. Phages could activate both cellular and humoral immunity, which is another goal of an effective vaccine design. Also, phages act as an effective adjuvant, along with the antigens, and induce a robust immune response. Phage-based vaccines can also be administered orally because of their stability in the gastrointestinal tract, in contrast to common vaccination routes, which are intradermal, subcutaneous, or intramuscular. This review presents the current improvements in phage-based vaccines and their applications as preventive or therapeutic vaccines.
Collapse
Affiliation(s)
- Sharareh Mohammad Hasani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan, Iran
| | - Forouzan Amerizadeh
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Serena NN, Boschero RA, Santiani MH, Pacce VD, Costa JMDV, Magalhães FBD, Wiedmar C, Alban SM, Soccol CR, Soccol VT. High-performance immune diagnosis of tuberculosis: Use of phage display and synthetic peptide in an optimized experimental design. J Immunol Methods 2022; 503:113242. [PMID: 35182576 DOI: 10.1016/j.jim.2022.113242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Immunoassays are practical and cost-effective approaches suitable for large-scale tuberculosis (TB) screening. This study identified new peptide mimotopes of Mycobacterium tuberculosis and applied them in the serodiagnosis of TB. Thereby, linear (X15, X8CX8) and constrained (LX-4 and LX-8) phage display peptide libraries were screened with purified Immunoglobulin G antibodies from TB-positive patients, and eight mimotopes were selected. The mimotope peptides were screened using the SPOT-synthesis technique followed by immunoblotting. Peptides P.Mt.PD.4 and P.Mt.PD.7 demonstrated the highest binding affinity and were chemically synthesized and used as antigens for enzyme-linked immunosorbent assay (ELISA) assays. Experimental designs were used to optimize the assays and to assess each variable's influence. Peptide P.Mt.PD.7 was differentiated between positive and negative samples and achieved 100% sensitivity and specificity when tested on a 100-sera panel. Therefore, the selected peptide was applied to the ELISA assay as a screening method for diagnosing TB represents a potential tool for helping to combat the disease.
Collapse
Affiliation(s)
- Natália Notto Serena
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Raphael Aparecido Boschero
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Manuel Hospinal Santiani
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Violetta Dias Pacce
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | - Silvana Maria Alban
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Vanete Thomaz Soccol
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Eskafi AH, Bagheri KP, Behdani M, Yamabhai M, Shahbazzadeh D, Kazemi-Lomedasht F. Development and characterization of human single chain antibody against Iranian Macrovipera lebetina snake venom. Toxicon 2021; 197:106-113. [DOI: 10.1016/j.toxicon.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
|
4
|
González-Mora A, Hernández-Pérez J, Iqbal HMN, Rito-Palomares M, Benavides J. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines (Basel) 2020; 8:vaccines8030504. [PMID: 32899720 PMCID: PMC7565293 DOI: 10.3390/vaccines8030504] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Vaccines are considered one of the most important bioproducts in medicine. Since the development of the smallpox vaccine in 1796, several types of vaccines for many diseases have been created. However, some vaccines have shown limitations as high cost and low immune responses. In that regard, bacteriophages have been proposed as an attractive alternative for the development of more cost-effective vaccines. Phage-displayed vaccines consists in the expression of antigens on the phage surface. This approach takes advantage of inherent properties of these particles such as their adjuvant capacity, economic production and high stability, among others. To date, three types of phage-based vaccines have been developed: phage-displayed, phage DNA and hybrid phage-DNA vaccines. Typically, phage display technology has been used for the identification of new and protective epitopes, mimotopes and antigens. In this context, phage particles represent a versatile, effective and promising alternative for the development of more effective vaccine delivery systems which should be highly exploited in the future. This review describes current advances in the development of bacteriophage-based vaccines, with special attention to vaccine delivery strategies. Moreover, the immunological aspects of phage-based vaccines, as well as the applications of phage display for vaccine development, are explored. Finally, important challenges and the future of phage-bases vaccines are discussed.
Collapse
Affiliation(s)
- Alejandro González-Mora
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Jesús Hernández-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Ave. Morones Prieto 3000 Pte, Monterrey, N.L. 64710, Mexico;
| | - Jorge Benavides
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
- Correspondence: ; Tel.: +52-(81)-8358-2000 (ext. 4821)
| |
Collapse
|
5
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
6
|
Kazemi-Lomedasht F, Rahimi Jamnani F, Behdani M, Shahbazzadeh D. Linear mimotope analysis of Iranian cobra ( Naja oxiana) snake venom using peptide displayed phage library. TOXIN REV 2019. [DOI: 10.1080/15569543.2017.1420082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Delavar Shahbazzadeh
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Chen Y, Zhang S, Hong Z, Lin Y, Dai H. A mimotope peptide-based dual-signal readout competitive enzyme-linked immunoassay for non-toxic detection of zearalenone. J Mater Chem B 2019; 7:6972-6980. [PMID: 31621766 DOI: 10.1039/c9tb01167f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, a mimotope peptide-based non-toxic photoelectrochemical (PEC) competitive enzyme-linked immunoassay (ELISA) was established for ultrasensitive detection of zearalenone (ZEN) with dual-signal readout.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Shupei Zhang
- Fujian Provincial Maternity and Children's Hospital
- Affiliated hospital of Fujian Medical University
- Fuzhou
- China
| | - Zhensheng Hong
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yanyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, and Department of Chemistry
- Fuzhou University
- Fuzhou 350002
- P. R. China
| | - Hong Dai
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
- Fujian Provincial Maternity and Children's Hospital
| |
Collapse
|
8
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
9
|
Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi-Lomedasht F. An overview on application of phage display technique in immunological studies. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|