1
|
Martínez-Hernández L, López-Vera E, Aguilar MB. Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents. Toxins (Basel) 2024; 16:504. [PMID: 39728762 PMCID: PMC11728717 DOI: 10.3390/toxins16120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Toxins from Conus snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans. This review aims to gather as much information as possible about Conus toxins (conotoxins) with an effect on potassium channels and/or currents, with a perspective of exploring the possibility of finding or developing a possible drug candidate from these toxins. The research indicates that, among the more than 900 species described for this genus, in only 14 species of the >100 studied to date have such toxins been found (classified according to the most specific evidence for each case), as follows: 17 toxins with activity on two groups of potassium channels (Kv and KCa), 4 toxins with activity on potassium currents, and 5 toxins that are thought to inhibit potassium channels by symptomatology and/or a high sequence similarity.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico
| |
Collapse
|
2
|
Ruelas-Callejas A, Aguilar MB, Arteaga-Tlecuitl R, Gomora JC, López-Vera E. The T-1 conotoxin μ-SrVA from the worm hunting marine snail Conus spurius preferentially blocks the human Na V1.5 channel. Peptides 2022; 156:170859. [PMID: 35940316 DOI: 10.1016/j.peptides.2022.170859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Conotoxin sr5a had previously been identified in the vermivorous cone snail Conus spurius. This conotoxin is a highly hydrophobic peptide, with the sequence IINWCCLIFYQCC, which has a cysteine pattern "CC-CC" belonging to the T-1 superfamily. It is well known that this superfamily binds to molecular targets such as calcium channels, G protein-coupled receptors (GPCR), and neuronal nicotinic acetylcholine receptors (nAChR) and exerts an effect mainly in the central nervous system. However, its effects on other molecular targets are not yet defined, suggesting the potential of newly relevant molecular interactions. To find and demonstrate a potential molecular target for conotoxin sr5a electrophysiological assays were performed on three subtypes of voltage-activated sodium channels (NaV1.5, NaV1.6, and NaV1.7) expressed in HEK-293 cells with three different concentrations of sr5a(200, 400, and 600 nM). 200 nM sr5a blocked currents mediated by NaV1.5 by 33%, NaV1.6 by 14%, and NaV1.7 by 7%. The current-voltage (I-V) relationships revealed that conotoxin sr5a exhibits a preferential activity on the NaV1.5 subtype; the activation of NaV1.5 conductance was not modified by the blocking effect of sr5a, but sr5a affected the voltage-dependence of inactivation of channels. Since peptide sr5a showed a specific activity for a sodium channel subtype, we can assign a pharmacological family and rename it as conotoxin µ-SrVA.
Collapse
Affiliation(s)
- Angélica Ruelas-Callejas
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Rogelio Arteaga-Tlecuitl
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 0410, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 0410, Mexico
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
3
|
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N, Servent D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front Mol Biosci 2022; 9:811365. [PMID: 35198603 PMCID: PMC8859281 DOI: 10.3389/fmolb.2022.811365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.
Collapse
Affiliation(s)
- Anne-Cécile Van Baelen
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arhamatoulaye Maïga
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Denis Servent,
| |
Collapse
|
4
|
Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing. Mar Drugs 2021; 19:md19100547. [PMID: 34677446 PMCID: PMC8541002 DOI: 10.3390/md19100547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022] Open
Abstract
Marine gastropods of the genus Conus, comprising more than 800 species, have the characteristic of injecting worms and other prey with venom. These conopeptide toxins, highly diverse in structure and action, are highly potent and specific for their molecular targets (ion channels, receptors, and transporters of the prey's nervous system), and thus are important research tools and source for drug discovery. Next-generation sequencing technologies are speeding up the discovery of novel conopeptides in many of these species, but only limited information is available for Conus spurius, which inhabits sandy mud. To search for new precursor conopeptides, we analyzed the transcriptome of the venous ducts of C. spurius and identified 55 putative conotoxins. Seven were selected for further study and confirmed by Sanger sequencing to belong to the M-superfamily (Sr3.M01 and Sr3.M02), A-superfamily (Sr1.A01 and Sr1.A02), O-superfamily (Sr15.O01), and Con-ikot-ikot (Sr21.CII01 and Sr22.CII02). Six of these have never been reported. To our knowledge, this report is the first to use high-throughput RNA sequencing for the study of the diversity of C. spurius conotoxins.
Collapse
|
5
|
Jimenez EC. Post-translationally modified conopeptides: Biological activities and pharmacological applications. Peptides 2021; 139:170525. [PMID: 33684482 DOI: 10.1016/j.peptides.2021.170525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 10/25/2022]
Abstract
Conus venoms comprise a large variety of biologically active peptides (conopeptides or conotoxins) that are employed for prey capture and other biological functions. Throughout the course of evolution of the cone snails, they have developed an envenomation scheme that necessitates a potent mixture of peptides, most of which are highly post-translationally modified, that can cause rapid paralysis of their prey. The great diversity of these peptides defines the ecological interactions and evolutionary strategy of cone snails. Such scheme has led to some pharmacological applications for pain, epilepsy, and myocardial infarction, that could be further explored to ultimately find unique peptide-based therapies. This review focuses on ∼ 60 representative post-translationally modified conopeptides that were isolated from Conus venoms. Various conopeptides reveal post-translational modifications of specific amino acids, such as hydroxylation of proline and lysine, gamma-carboxylation of glutamate, formation of N-terminal pyroglutamate, isomerization of l- to d-amino acid, bromination of tryptophan, O-glycosylation of threonine or serine, sulfation of tyrosine, and cysteinylation of cysteine, other than the more common disulfide crosslinking and C-terminal amidation. Many of the post-translationally modified peptides paved the way for the characterization, by alternative analytical methods, of other pharmacologically important peptides that are classified under 27 conopeptide families denoting pharmacological classes.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City, 2600, Philippines.
| |
Collapse
|
6
|
Bosse GD, Urcino C, Watkins M, Flórez Salcedo P, Kozel S, Chase K, Cabang A, Espino SS, Safavi-Hemami H, Raghuraman S, Olivera BM, Peterson RT, Gajewiak J. Discovery of a Potent Conorfamide from Conus episcopatus Using a Novel Zebrafish Larvae Assay. JOURNAL OF NATURAL PRODUCTS 2021; 84:1232-1243. [PMID: 33764053 DOI: 10.1021/acs.jnatprod.0c01297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products such as conotoxins have tremendous potential as tools for biomedical research and for the treatment of different human diseases. Conotoxins are peptides present in the venoms of predatory cone snails that have a rich diversity of pharmacological functions. One of the major bottlenecks in natural products research is the rapid identification and evaluation of bioactive molecules. To overcome this limitation, we designed a set of light-induced behavioral assays in zebrafish larvae to screen for bioactive conotoxins. We used this screening approach to test several unique conotoxins derived from different cone snail clades and discovered that a conorfamide from Conus episcopatus, CNF-Ep1, had the most dramatic alterations in the locomotor behavior of zebrafish larvae. Interestingly, CNF-Ep1 is also bioactive in several mouse assay systems when tested in vitro and in vivo. Our novel screening platform can thus accelerate the identification of bioactive marine natural products, and the first compound discovered using this assay has intriguing properties that may uncover novel neuronal circuitry.
Collapse
Affiliation(s)
- Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, 201 Skaggs Hall 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Cristoval Urcino
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Maren Watkins
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Paula Flórez Salcedo
- Department of Neurobiology and Anatomy, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, Utah 84112, United States
| | - Sabrina Kozel
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - April Cabang
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Samuel S Espino
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Helena Safavi-Hemami
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, Utah 84112, United States
- Department of Biomedical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Shrinivasan Raghuraman
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, 201 Skaggs Hall 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
8
|
Studies of Conorfamide-Sr3 on Human Voltage-Gated Kv1 Potassium Channel Subtypes. Mar Drugs 2020; 18:md18080425. [PMID: 32823677 PMCID: PMC7459591 DOI: 10.3390/md18080425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, Conorfamide-Sr3 (CNF-Sr3) was isolated from the venom of Conus spurius and was demonstrated to have an inhibitory concentration-dependent effect on the Shaker K+ channel. The voltage-gated potassium channels play critical functions on cellular signaling, from the regeneration of action potentials in neurons to the regulation of insulin secretion in pancreatic cells, among others. In mammals, there are at least 40 genes encoding voltage-gated K+ channels and the process of expression of some of them may include alternative splicing. Given the enormous variety of these channels and the proven use of conotoxins as tools to distinguish different ligand- and voltage-gated ion channels, in this work, we explored the possible effect of CNF-Sr3 on four human voltage-gated K+ channel subtypes homologous to the Shaker channel. CNF-Sr3 showed a 10 times higher affinity for the Kv1.6 subtype with respect to Kv1.3 (IC50 = 2.7 and 24 μM, respectively) and no significant effect on Kv1.4 and Kv1.5 at 10 µM. Thus, CNF-Sr3 might become a novel molecular probe to study diverse aspects of human Kv1.3 and Kv1.6 channels.
Collapse
|
9
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
10
|
Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochem Pharmacol 2019; 164:342-348. [PMID: 31028742 DOI: 10.1016/j.bcp.2019.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/22/2019] [Indexed: 01/06/2023]
Abstract
Conorfamides are a poorly studied family of cone snail venom peptides with broad biological activities, including inhibition of glutamate receptors, acid-sensing ion channels, and voltage-gated potassium channels. The aim of this study was to characterize the pharmacological activity of two novel linear conorfamides (conorfamide_As1a and conorfamide_As2a) and their non-amidated counterparts (conopeptide_As1b and conopeptide_As2b) that were isolated from the venom of the Mexican cone snail Conus austini. Although As1a, As2a, As1b and As2b were identified by activity-guided fractionation using a high-throughput fluorescence imaging plate reader (FLIPR) assay assessing α7 nAChR activity, sequence determination revealed activity associated with four linear peptides of the conorfamide rather than the anticipated α-conotoxin family. Pharmacological testing revealed that the amidated peptide variants altered desensitization of acid-sensing ion channels (ASICs) 1a and 3, and the native lysine to arginine mutation differentiating As1a and As1b from As2a and As2b introduced ASIC1a peak current potentiation. Surprisingly, these conorfamides also inhibited α7 and muscle-type nicotinic acetylcholine receptors (nAChR) at nanomolar concentrations. This is the first report of conorfamides with dual activity, with the nAChR activity being the most potent molecular target of any conorfamide discovered to date.
Collapse
|
11
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
12
|
Espino SS, Robinson SD, Safavi-Hemami H, Gajewiak J, Yang W, Olivera BM, Liu Q. Conopeptides promote itch through human itch receptor hMgprX1. Toxicon 2018; 154:28-34. [PMID: 30243794 DOI: 10.1016/j.toxicon.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Members of Mas related G-protein coupled receptors (Mrgpr) are known to mediate itch. To date, several compounds have been shown to activate these receptors, including chloroquine, a common antimalarial drug, and peptides of the RF-amide family. However, specific ligands for these receptors are still lacking and there is a need for novel compounds that can be used to modulate the receptors in order to understand the cellular and molecular mechanism in which they mediate itch. Some cone snail venoms were previously shown to induce itch in mice. Here, we show that the venom of Conus textile induces itch through activation of itch-sensing sensory neurons, marked by their sensitivity to chloroquine. Two RF-amide peptides, CNF-Tx1 and CNF-Tx2, were identified in a C. textile venom gland transcriptome. These belong to the conorfamide family of peptides which includes previously described peptides from the venoms of Conus victoriae (CNF-Vc1) and Conus spurius (CNF-Sr1 and CNF-Sr2). We show that CNF-Vc1 and CNF-Sr1 activate MrgprC11 whereas CNF-Vc1 and CNF-Tx2 activate the human MrgprX1 (hMrgprX1). The peptides CNF-Tx1 and CNF-Sr2 do not activate MrgprC11 or hMrgprX1. Intradermal injection of CNF-Vc1 and CNF-Tx2 into the cheek of a transgenic mouse expressing hMrgprX1 instead of endogenous mouse Mrgprs resulted in itch-related scratching thus demonstrating the in vivo activity of these peptides. Using truncated analogues of CNF-Vc1, we identified amino acids at positions 7-14 as important for activity against hMrgprX1. The conopeptides reported here are tools that can be used to advance our understanding of the cellular and molecular mechanism of itch mediated by Mrgprs.
Collapse
Affiliation(s)
- Samuel S Espino
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis MO 63110, USA
| | - Samuel D Robinson
- Department of Biology, University of Utah, Salt Lake City UT 84112, USA
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City UT 84112, USA; Department of Biochemistry, University of Utah, Salt Lake City UT 84112, USA
| | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City UT 84112, USA
| | - Weishan Yang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis MO 63110, USA
| | | | - Qin Liu
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis MO 63110, USA.
| |
Collapse
|