1
|
Machamer JB, Vazquez-Cintron EJ, Stenslik MJ, Pagarigan KT, Bradford AB, Ondeck CA, McNutt PM. Neuromuscular recovery from botulism involves multiple forms of compensatory plasticity. Front Cell Neurosci 2023; 17:1226194. [PMID: 37650071 PMCID: PMC10463753 DOI: 10.3389/fncel.2023.1226194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.
Collapse
Affiliation(s)
- James B. Machamer
- BASF, Research Triangle Park, NC, United States
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | | | - Mallory J. Stenslik
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Kathleen T. Pagarigan
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Aaron B. Bradford
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Celinia A. Ondeck
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Machamer JB, Vazquez-Cintron EJ, O'Brien SW, Kelly KE, Altvater AC, Pagarigan KT, Dubee PB, Ondeck CA, McNutt PM. Antidotal treatment of botulism in rats by continuous infusion with 3,4-diaminopyridine. Mol Med 2022; 28:61. [PMID: 35659174 PMCID: PMC9164507 DOI: 10.1186/s10020-022-00487-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, select agent toxins that inhibit neurotransmitter release at motor nerve terminals, causing muscle paralysis and death by asphyxiation. Other than post-exposure prophylaxis with antitoxin, the only treatment option for symptomatic botulism is intubation and supportive care until recovery, which can require weeks or longer. In previous studies, we reported the FDA-approved drug 3,4-diaminopyridine (3,4-DAP) reverses early botulism symptoms and prolongs survival in lethally intoxicated mice. However, the symptomatic benefits of 3,4-DAP are limited by its rapid clearance. Here we investigated whether 3,4-DAP could sustain symptomatic benefits throughout the full course of respiratory paralysis in lethally intoxicated rats. First, we confirmed serial injections of 3,4-DAP stabilized toxic signs and prolonged survival in rats challenged with 2.5 LD50 BoNT/A. Rebound of toxic signs and death occurred within hours after the final 3,4-DAP treatment, consistent with the short half-life of 3,4-DAP in rats. Based on these data, we next investigated whether the therapeutic benefits of 3,4-DAP could be sustained throughout the course of botulism by continuous infusion. To ensure administration of 3,4-DAP at clinically relevant doses, three infusion dose rates (0.5, 1.0 and 1.5 mg/kg∙h) were identified that produced steady-state serum levels of 3,4-DAP consistent with clinical dosing. We then compared dose-dependent effects of 3,4-DAP on toxic signs and survival in rats intoxicated with 2.5 LD50 BoNT/A. In contrast to saline vehicle, which resulted in 100% mortality, infusion of 3,4-DAP at ≥ 1.0 mg/kg∙h from 1 to 14 d after intoxication produced 94.4% survival and full resolution of toxic signs, without rebound of toxic signs after infusion was stopped. In contrast, withdrawal of 3,4-DAP infusion at 5 d resulted in re-emergence of toxic sign and death within 12 h, confirming antidotal outcomes require sustained 3,4-DAP treatment for longer than 5 d after intoxication. We exploited this novel survival model of lethal botulism to explore neurophysiological parameters of diaphragm paralysis and recovery. While neurotransmission was nearly eliminated at 5 d, neurotransmission was significantly improved at 21 d in 3,4-DAP-infused survivors, although still depressed compared to naïve rats. 3,4-DAP is the first small molecule to reverse systemic paralysis and promote survival in animal models of botulism, thereby meeting a critical treatment need that is not addressed by post-exposure prophylaxis with conventional antitoxin. These data contribute to a growing body of evidence supporting the use of 3,4-DAP to treat clinical botulism.
Collapse
Affiliation(s)
- James B Machamer
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- BASF, Research Triangle, Durham, NC, 27709, USA
| | | | - Sean W O'Brien
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Kyle E Kelly
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Amber C Altvater
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Kathleen T Pagarigan
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Parker B Dubee
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Celinia A Ondeck
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Patrick M McNutt
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
3
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
4
|
Vazquez-Cintron E, Machamer J, Ondeck C, Pagarigan K, Winner B, Bodner P, Kelly K, Pennington MR, McNutt P. Symptomatic treatment of botulism with a clinically approved small molecule. JCI Insight 2020; 5:132891. [PMID: 31996484 DOI: 10.1172/jci.insight.132891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent neuroparalytic toxins that cause mortality through respiratory paralysis. The approved medical countermeasure for BoNT poisoning is infusion of antitoxin immunoglobulins. However, antitoxins have poor therapeutic efficacy in symptomatic patients; thus, there is an urgent need for treatments that reduce the need for artificial ventilation. We report that the US Food and Drug Administration-approved potassium channel blocker 3,4-diaminopyridine (3,4-DAP) reverses respiratory depression and neuromuscular weakness in murine models of acute and chronic botulism. In ex vivo studies, 3,4-DAP restored end-plate potentials and twitch contractions of diaphragms isolated from mice at terminal stages of BoNT serotype A (BoNT/A) botulism. In vivo, human-equivalent doses of 3,4-DAP reversed signs of severe respiratory depression and restored mobility in BoNT/A-intoxicated mice at terminal stages of respiratory collapse. Multiple-dosing administration of 3,4-DAP improved respiration and extended survival at up to 5 LD50 BoNT/A. Finally, 3,4-DAP reduced gastrocnemius muscle paralysis and reversed respiratory depression in sublethal models of serotype A-, B-, and E-induced botulism. These findings make a compelling argument for repurposing 3,4-DAP to symptomatically treat symptoms of muscle paralysis caused by botulism, independent of serotype. Furthermore, they suggest that 3,4-DAP is effective for a range of botulism symptoms at clinically relevant time points.
Collapse
|
5
|
Zanetti G, Negro S, Pirazzini M, Caccin P. Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Bio Protoc 2018; 8:e2759. [PMID: 34179283 DOI: 10.21769/bioprotoc.2759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 11/02/2022] Open
Abstract
The neuromuscular junction (NMJ) is the specialized synapse by which peripheral motor neurons innervate muscle fibers and control skeletal muscle contraction. The NMJ is the target of several xenobiotics, including chemicals, plant, animal and bacterial toxins, as well as of autoantibodies raised against NMJ antigens. Depending on their biochemical nature, the site they target (either the nerve or the muscle) and their mechanism of action, substances affecting NMJ produce very specific alterations of neuromuscular functionality. Here we provide a detailed protocol to isolate the diaphragmatic muscle from mice and to set up two autonomously innervated hemidiaphragms. This preparation can be used to study bioactive substances like toxins, venoms and neuroactive molecules of various origin, or to measure the force of skeletal muscle contraction. The 'mouse phrenic nerve hemidiaphragm assay' (MPN) is an established model of ex vivo NMJ and recapitulates the complexity of neuromuscular transmission in a system easy to control and to manipulate, thus representing a valuable tool to study both NMJ physiology and the mechanism of action of toxins and other molecules acting at this synapse.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|