1
|
Welch KD, Gardner DR, Lee ST, Stonecipher CA, Cook D. Comparison of the acute toxicity of zygacine versus zygadenine. Toxicon 2024; 248:108037. [PMID: 39038665 DOI: 10.1016/j.toxicon.2024.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Foothill death camas (Zigadenus paniculatus) is a common poisonous plant found throughout western North America. The toxic alkaloids in foothill death camas are zygadenine, esters of zygadenine, with zygacine, the 3-acetyl ester of zygadenine, often being the most abundant. Two additional esters of zygadenine that are found primarily in the floral parts of foothill death camas are 3-angeloylzygadenine and 3-veratroylzygadeine. Recent research has shown that very little zygacine is detected in the blood of animals dosed with zygacine. A recent investigation into the metabolism of zygacine demonstrated that zygacine is rapidly metabolized to zygadenine, demonstrating a clear first pass effect. The objective of this study was to determine if there is a difference in the acute toxicity of zygacine and zygadenine to mice and sheep. Additionally, two other esters of zygadenine, 3-angeloylzygadenine and 3-veratroylzygadenine, were evaluated for their acute toxicity in a mouse IV LD50 assay. All three esters of zygadenine tested were more toxic than zygadenine, with the following rank order of toxicity in the mouse IV LD50 assay: zygadenine-HCl (59.5 mg/kg) < zygacine-HCl (1.6 mg/kg) < angeloylzygadenine-HCl (1.0 mg/kg) < veratroylzygadenine-HCl (0.5 mg/kg). Similar to the results of the mouse experiments, zygacine-HCl was significantly more toxic than zygadenine-HCl in sheep dosed IV with pure compounds. Sheep dosed with 1.25 mg/kg zygacine-HCl showed severe clinical signs of poisoning. Whereas a dose of 12.5 mg/kg zygadenine-HCl was required to elicit a similar onset and severity of clinical signs. Overall, these data indicate that zygacine is more toxic than zygadenine when administered IV, when first pass metabolism is bypassed.
Collapse
Affiliation(s)
- Kevin D Welch
- USDA-ARS Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA.
| | - Dale R Gardner
- USDA-ARS Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Stephen T Lee
- USDA-ARS Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Clint A Stonecipher
- USDA-ARS Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Daniel Cook
- USDA-ARS Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| |
Collapse
|
2
|
Lee ST, Kelly J, Stout V, Lamb S, Baldwin TJ, Cook D. Japanese Yew (Taxus) poisoning of wild ungulates in Utah during the winter of 2022-2023. Toxicon 2024; 246:107779. [PMID: 38821319 DOI: 10.1016/j.toxicon.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Taxus is a genus of coniferous shrubs and trees, commonly known as the yews, in the family Taxaceae. All species of yew contain taxine alkaloids, which are ascribed as the toxic principles. Anecdotally, free ranging ruminants such as antelope, deer, elk, and moose have been regarded as tolerant to yew. Herein several cases of intoxication of deer, elk, and moose by yew from the state of Utah in the winter of 2022-2023 are documented. Ingestion of yew was documented by three means among the poisoned cervids; plant fragments consistent with yew were visually observed in the rumen contents, chemical analysis, and subsequent detection of the taxines from rumen and liver contents, and identification of exact sequence variants identified as Taxus species from DNA metabarcoding. Undoubtedly, the record snowfall in Utah during the winter of 2022-2023 contributed to these poisonings.
Collapse
Affiliation(s)
- Stephen T Lee
- USDA ARS Poisonous Plant Research Laboratory, Logan, UT, 84332, USA
| | - Jane Kelly
- Utah Veterinary Diagnostic Laboratory, Spanish Fork, UT, 84660, USA
| | - Virginia Stout
- Utah Division of Wildlife Resources, Salt Lake City, UT, 84116, USA
| | - Sydney Lamb
- Utah Division of Wildlife Resources, Salt Lake City, UT, 84116, USA
| | | | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory, Logan, UT, 84332, USA.
| |
Collapse
|
3
|
Green BT, Welch KD, Lee ST, Davis TZ, Stonecipher CA, Stegelmeier BL, Cook D. Acute death as a result of poisoning tropical (Bos taurus indicus) but not temperate (Bos taurus taurus) cattle after oral dosing with Lupinus leucophyllus (velvet lupine). Toxicon 2024; 242:107706. [PMID: 38570167 DOI: 10.1016/j.toxicon.2024.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Due to climate change and increasing summer temperatures, tropical cattle may graze where temperate cattle have grazed, exposing tropical cattle to toxic plants they may be unfamiliar with. This work compared the toxicity of Lupinus leucophyllus (velvet lupine) in temperate and tropical cattle. Orally dosed velvet lupine in tropical cattle caused death. If producers opt to graze tropical cattle, additional care must be taken on rangelands where toxic lupines like velvet lupine grow.
Collapse
Affiliation(s)
- Benedict T Green
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA.
| | - Kevin D Welch
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Stephen T Lee
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - T Zane Davis
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Clinton A Stonecipher
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Bryan L Stegelmeier
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Daniel Cook
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| |
Collapse
|
4
|
Lee ST, Stonecipher CA, Green BT, Welch KD, Gardner DR, Cook D. Ruminant metabolism of zygacine, the major toxic alkaloid in foothill death camas (Zigadenuspaniculatus). Toxicon 2024; 240:107651. [PMID: 38364982 DOI: 10.1016/j.toxicon.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Death Camas (Zigadenus spp.) are common poisonous plants distributed throughout North America. The toxic alkaloids in foothill death camas are zygadenine and a series of zygadenine esters, with zygacine, the 3-acetyl ester of zygadenine, being the most abundant. Both cattle and sheep can be poisoned by grazing death camas, however, sheep consume death camas more readily and are most often poisoned. We hypothesized that the presence of enzymes, including esterases present in the rumen, liver, and blood of livestock would metabolize zygacine. The objective of this study was to investigate the metabolism of zygacine in sheep and cattle using in-vitro and in-vivo systems. Results from experiments where zygacine was incubated in rumen culture, plasma, liver S9 fractions, and liver microsomes and from the analysis of rumen and sera from sheep and cattle dosed death camas plant material demonstrated that zygacine is metabolized to zygadenine in the rumen, liver and blood of sheep and cattle. The results from this study indicate that diagnosticians should analyze for zygadenine, and not zygacine, in the rumen and sera for the diagnosis of livestock suspected to have been poisoned by foothill death camas.
Collapse
Affiliation(s)
- Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA.
| | - Clinton A Stonecipher
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA
| | - Benedict T Green
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA
| | - Kevin D Welch
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA
| |
Collapse
|
5
|
Maia MRG, Monteiro A, Valente IM, Sousa C, Miranda C, Castro C, Cortez PP, Cabrita ARJ, Trindade H, Fonseca AJM. Upcycling post-harvest biomass residues from native European Lupinus species: from straws and pod shells production to nutritive value and alkaloids content for ruminant animals. Front Nutr 2023; 10:1195015. [PMID: 37521412 PMCID: PMC10374839 DOI: 10.3389/fnut.2023.1195015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
The production of Lupinus seeds for food and feed is increasing worldwide, which results in large amounts of post-harvest biomass residues, considered of low value and left in the field to be burned or incorporated in the soil. To valorize these agricultural wastes, this work aimed to assess their potential as an alternative feed for ruminants. Thus, the production yield, nutritive value, and alkaloid content of straws and pod shells from three native European Lupinus species, L. albus 'Estoril' (white), L. angustifolius 'Tango' (narrow-leafed), and L. luteus 'Cardiga' (yellow), cultivated in two locations, were evaluated. The dry matter (DM) yield of straws and pod shells were the highest for L. albus 'Estoril' (4.10 t ha-1) and the lowest for L. angustifolius 'Tango' (1.78 t ha-1), suggesting a poor adaptation of narrow-leafed lupin to the particularly dry and warm agronomic year. Despite species-specific differences, lupin biomass residues presented higher crude protein (53.0-68.9 g kg-1 DM) and lignin (103-111 g kg-1 DM) content than cereal straws usually used in ruminant feeding, thus resulting in higher metabolizable energy (6.43-6.58 MJ kg-1 DM) content. In vitro digestibility was similar among lupin species (47.7-50.6%) and higher in pod shells (53.7%) than in straws (44.6%). Lupinus albus 'Estoril' and L. luteus 'Cardiga' presented considerable amounts of alkaloids in straws (23.9 and 119 mg kg-1 DM) and pod shells (20.5 and 298 mg kg-1 DM), while no alkaloids were detected in L. angustifolius 'Tango' biomass residues. Considering the combined production of straw and pod shells per lupin species, it is anticipated that lupin biomass residues produced per ha can fulfill 85% of the energy and nearly 50% of protein requirements of a flock of 4 to 9 dry and mid-pregnancy sheep with 50 kg body weight for one year. No negative effects on small (ovine) and large (bovine) ruminant species due to alkaloids are expected, even if biomass residues are consumed at up to 85% DM intake. The large production yield along with its nutritive value unveils the potential of lupin biomass residues valorization as alternative fodder for ruminants, promoting sustainability under a circular economy approach.
Collapse
Affiliation(s)
- Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - André Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Inês M. Valente
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- REQUIMTE, LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Carla Sousa
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carla Miranda
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carlos Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Paulo P. Cortez
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Henrique Trindade
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Qie M, Li S, Guo C, Yang S, Zhao Y. Study of the occurrence of toxic alkaloids in forage grass by liquid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1654:462463. [PMID: 34438299 DOI: 10.1016/j.chroma.2021.462463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The toxic alkaloids in forage grass present a serious health hazard to humans and livestock, especially ergot alkaloids (EAs), pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs). Hence, there is a need for a simultaneous method that allows these dangerous plant toxins to be determined. A simple and effective method was developed to determine fifteen toxic alkaloids (EAs, PAs and TAs) in forage grass using the QuEChERS method and liquid chromatography tandem mass spectrometry (LC-MS/MS). The developed method was validated with average recoveries ranging from 63.10 to 102.10%, and relative standard deviations lower than or equal to 6.39% were obtained. Good linearity over the concentration range of 10-600 µg/kg dry matter (DM) was observed for the target alkaloids. The determination coefficients R2 calculated for each of the matrix calibration curves were greater than 0.99. The limits of detection and quantification were 5 µg/kg DM and 10 µg/kg DM, respectively. The reproducibility of the method was verified in three laboratories: all of the mean recoveries of 15 alkaloids were higher than 60%, and the relative standard deviations in alkaloids between laboratories were all less than 14.24%. The proposed method was applied to analyse 134 forage grass samples from the meadow steppe of Inner Mongolia to monitor toxic alkaloids. A significant difference in the frequency of contamination was found between different herbage species and different regions.
Collapse
Affiliation(s)
- Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Shuangyue Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Chuntao Guo
- Bceijing Purkinje General Instrument Co., Ltd., Beijing 101200, P.R. China
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China.
| |
Collapse
|
7
|
Stonecipher CA, Cook D, Welch KD, Gardner DR, Pfister JA. Seasonal variation in toxic steroidal alkaloids of foothill death camas (Zigadenus paniculatus). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|