1
|
Green BT, Lee ST, Welch KD, Cook D, Stonecipher CA. The actions of varenicline on alkaloids from Conium maculatum (poison hemlock), Lupinus sulphureus (sulphur lupine) and Nicotiana glauca (tree tobacco). Toxicon 2024; 252:108184. [PMID: 39577702 DOI: 10.1016/j.toxicon.2024.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Evidence-based therapies to manage the clinical signs of intoxication caused by toxic plants in livestock are lacking. For that reason, the aim of this work was to develop a drug-based intervention for the management of clinical signs of piperidine alkaloid intoxication in livestock. The actions of anabasine, coniine, γ-coniceine, and two total alkaloid extracts from Lupinus sulphureus were compared in the presence and absence of the nicotinic acetylcholine receptor partial agonist varenicline in RD cells, mice and goats. Pretreatment of RD cells with 10.0 μM varenicline significantly shifted the anabasine fifty percent effective concentration (EC50) value to a greater concentration and blocked the response of the cells to coniine. γ-coniceine did not have any effect on RD cells as measured by membrane potential sensing dye. Swiss Webster mice median lethal dose (LD50) values for anabasine, coniine, γ-coniceine were 1.5, 5.5, and 3.7 mg/kg respectively, and pretreatment with 10.0 mg/kg i. p. dosed varenicline shifted the LD50 values to 4.2, 9.1, and 4.3 mg/kg respectively. The rodent LD50 value of the Pendelton, WA L. sulphureus quinolizidine alkaloid extract was shifted to a lesser concentration by varenicline while the Ritzville, WA L. sulphureus piperidine alkaloid extract was shifted to a greater concentration by varenicline. The clinical signs of intoxication in goats orally dosed with Conium maculatum were exacerbated by 0.5, 1.0 and 10.0 mg/kg i. v. dosed varenicline. These results suggest that varenicline was effective at shifting piperidine alkaloid EC50 values in RD cells and increasing piperidine but not quinolizidine alkaloid LD50 values in mice and was not useful at managing the clinical signs of poison hemlock intoxication in goats.
Collapse
Affiliation(s)
- Benedict T Green
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA.
| | - Stephen T Lee
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Kevin D Welch
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Daniel Cook
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| | - Clinton A Stonecipher
- United States Department of Agriculture, Agricultural Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, USA
| |
Collapse
|
2
|
Moise G, Jîjie AR, Moacă EA, Predescu IA, Dehelean CA, Hegheș A, Vlad DC, Popescu R, Vlad CS. Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants. Pharmaceuticals (Basel) 2024; 17:1339. [PMID: 39458980 PMCID: PMC11510325 DOI: 10.3390/ph17101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. DISCUSSION Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. CONSLUSIONS This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
Collapse
Affiliation(s)
- Georgiana Moise
- Department of Clinical Pharmacology, The Doctoral School of Medicine, “Pius Brînzeu” County Emergency Clinical Hospital Timisoara, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina Hegheș
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department II—Department of Microscopic Morphology, Division of Cell and Molecular Biology II, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
| |
Collapse
|
3
|
Green BT, Welch KD, Lee ST, Stonecipher CA, Gardner DR, Stegelmeier BL, Davis TZ, Cook D. Biomarkers and their potential for detecting livestock plant poisonings in Western North America. Front Vet Sci 2023; 10:1104702. [PMID: 36908517 PMCID: PMC9992831 DOI: 10.3389/fvets.2023.1104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The United States National Cancer Institute defines a biomarker as: "A biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease." In Veterinary Medicine, biomarkers associated with plant poisonings of livestock have great utility. Since grazing livestock poisoned by toxic plants are often found dead, biomarkers of plant poisoning allow for a more rapid postmortem diagnosis and response to prevent further deaths. The presence and concentration of toxins in poisonous plants are biomarkers of risk for livestock poisoning that can be measured by the chemical analysis of plant material. More difficult is, the detection of plant toxins or biomarkers in biological samples from intoxicated or deceased animals. The purpose of this article is to review potential biomarkers of plant poisoning in grazing livestock in the Western North America including recently investigated non-invasive sampling techniques. Plants discussed include larkspur, lupine, water hemlock, swainsonine-containing plants, selenium-containing plants, and pyrrolizidine alkaloid containing plants. Other factors such as animal age and sex that affect plant biomarker concentrations in vivo are also discussed.
Collapse
Affiliation(s)
- Benedict T Green
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - Kevin D Welch
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - Stephen T Lee
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - Clinton A Stonecipher
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - Bryan L Stegelmeier
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - T Zane Davis
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| | - Daniel Cook
- Poisonous Plant Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Logan, UT, United States
| |
Collapse
|
4
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. Phytotoxicological study of selected poisonous plants from Azad Jammu & Kashmir. PLoS One 2022; 17:e0263605. [PMID: 35544538 PMCID: PMC9094571 DOI: 10.1371/journal.pone.0263605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Poisonous plants cause tremendous economic losses to the livestock industry. These economic losses are deterioration in their health, decreased productivity, deformed offspring, and reduced longevity. The current study is the first comprehensive report on poisonous plants of Azad Jammu and Kashmir which systematically documents the phytotoxicological effect and mode of action in livestock. The information was gathered from 271 informants including 167 men and 104 women through semi-structured interviews and literature search through available databases. The data collected through interviews was analyzed with quantitative tools viz. the factor informant consensus and fidelity level. A total of 38 species of flowering plants belonging to 23 families and 38 genera were reported. Family Asteraceae (5 spp) was the most dominant, followed by Solanaceae (4 spp), Fabaceae (4 spp), Euphorbiaceae (4 spp) and Convolvulaceae (3 spp). Among all the species collected, herbs were the dominant life form (22 spp, 57.89%), trailed by shrubs (11 spp, 28.95%), and trees (5 spp, 13.16%). Whole plant toxicity was reported to be the highest (15 spp, 39.47%), followed by leaf toxicity (12 spp, 31.58%), seed toxicity (4 spp, 7.89%), fruit toxicity (3 spp, 10.53%), latex toxicity (2 spp, 5.26%), flowers toxicity (1 spp, 2.63%), and berries toxicity (1 spp, 2.63%). The most toxic route of administration was found oral (39 spp, 40.63%), followed by intraperitoneal (24 spp, 25%), and intravenous (21 spp, 21.88%). The most commonly affected organ was found liver (20.41%), followed by gastrointestinal tract (20.341%), CNS (16.33%), skin (14.29%), kidneys (12.24%), lungs (4.04%), reproductive organs (2.04%), spleen (1.75%), blood (1.75%), heart (1.75%), urinary tract (1.75%), and pancreas (1.75%). The maximum Fic value was found for dermatological disorders (0.91), followed by the endocrine system (0.90), gastrointestinal (0.82), neurology (0.77), nephrology (0.67), cardiovascular (0.67), urinary (0.67), respiratory (0.60), sexual (0.60) disorders. Senecio vulgaris, and Ageratum conyzoides were the most important plants with fidelity level (0.95) and (0.87). Nerium oleander, Lantana camara, Leucaena leucocephala, and Ricinus communis were the important poisonous plant with maximum fidelity level (100%). Ricinus communis with reported lowest LD50 (<20 mg/kg) was the top-ranked poisonous plant followed by Lantana camara and Justicia adhatoda (25-50 mg/kg), Nerium Oleander (157.37 mg/kg), and Datura innoxia (400 mg/kg). We found that knowledge about poisonous plants is less prevailing in the rural areas of Azad Kashmir compared to the knowledge about medicinal plants and poisonous nature of reported plants is due to production of toxic substances and presence of essential oils.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Fahmida Parveen
- Department of Veterinary Pathology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, Faulty of Veterinary and Animal Sciences, University of Poonch Rawalakot (UPR), Azad Jammu & Kashmir, Pakistan
| |
Collapse
|
5
|
Arsenova R, Prager C, Becker LL, Scholtis S, Methling M, Kaindl AM. Beware of Neurotoxins in Common Plants: Water Hemlock Poisoning Presenting as Convulsive Status Epilepticus. Pediatr Neurol 2022; 127:39-40. [PMID: 34954473 DOI: 10.1016/j.pediatrneurol.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pediatric status epilepticus occurs in about 44/100.000 children per year with an unknown cause in about a third of patients. One cause can be the ingestion of plants containing toxins that target the central nervous system. Here we describe an ingestion of water hemlock resulting in a status epilepticus. METHODS We studied in detail the clinical, laboratory, electrophysiological, and radiological features of a patient with status epilepticus. RESULTS A 9-year-old boy presented to the pediatric emergency department for sudden onset of nausea, vomiting, and status epilepticus approximately one hour after the patient had bitten into the root of a water plant in an inner-city park. Bilateral tonic-clonic seizures could only be terminated after administration of midazolam, lorazepam, and finally propofol. Cranial MRI, cerebrospinal fluid, and EEG findings were largely unremarkable. The ingested plant was identified as water hemlock through a detailed search with the help of a drawing issued by the patient with the help of the medical team. The specific toxicological analysis for water hemlock verified the presence of cicutoxin and cicudiol in the blood sample. The patient was discharged, levetiracetam was weaned off four weeks later, and he has remained seizure free since. CONCLUSIONS Given the considerable percentage of cases of unknown etiology in new-onset pediatric status epilepticus, it is important to consider plant intoxication as a possible cause.
Collapse
Affiliation(s)
- Radina Arsenova
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Prager
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Scholtis
- Department of forensic Toxicology, Landesinstitut für gerichtliche und soziale Medizin Berlin, Berlin, Germany
| | - Maximilian Methling
- Department of forensic Toxicology, Landesinstitut für gerichtliche und soziale Medizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Green BT, Stonecipher CA, Welch KD, Lee ST, Cook D. Evaluation of diazepam as a drug treatment for water hemlock (Cicuta species) poisoning in Spanish goats. Toxicon 2022; 205:79-83. [PMID: 34871669 DOI: 10.1016/j.toxicon.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Water hemlocks (Cicuta spp.) are toxic members of the Apiaceae plant family. The best drug treatment for the convulsions associated with acute water hemlock poisoning in livestock and humans has not been determined experimentally. This work compared the therapeutic actions of benzodiazepines (diazepam) and barbiturates (phenobarbital) on water hemlock poisoning in a goat model. C. maculata tubers were orally dosed to goats. Experimental groups consisted of; control saline; 20 mg/kg phenobarbital; 1.0 mg/kg diazepam; 10 mg/kg diazepam; and 1.0 mg/kg diazepam administered as needed to moderate convulsions by intravenous (i.v.) infusion. Diazepam provided nearly instant control of convulsions. Clinical signs of poisoning were completely controlled for the duration of the experiment in the goats that received the 10 mg/kg diazepam dose. These results suggest that diazepam is effective at managing the clinical signs of water hemlock poisoning in goats. We speculate that diazepam can be used as a potential treatment for water hemlock poisoning in other livestock species and humans.
Collapse
Affiliation(s)
- Benedict T Green
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA.
| | - Clinton A Stonecipher
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA
| | - Kevin D Welch
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA
| | - Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA
| |
Collapse
|