1
|
Hu W, Su S, Mohamed HF, Xiao J, Kang J, Krock B, Xie B, Luo Z, Chen B. Assessing the global distribution and risk of harmful microalgae: A focus on three toxic Alexandrium dinoflagellates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174767. [PMID: 39004369 DOI: 10.1016/j.scitotenv.2024.174767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Harmful dinoflagellates and their resulting blooms pose a threat to marine life and human health. However, to date, global maps of marine life often overlook harmful microorganisms. As harmful algal blooms (HABs) increase in frequency, severity, and extent, understanding the distribution of harmful dinoflagellates and their drivers is crucial for their management. We used MaxEnt, random forest, and ensemble models to map the habitats of the representative HABs species in the genus Alexandrium, including A. catenella, A. minutum, and A. pacificum. Since species occurrence records used in previous studies were solely morphology-based, potentially leading to misidentifications, we corrected these species' distribution records using molecular criteria. The results showed that the key environmental drivers included the distance to the coastline, bathymetry, sea surface temperature (SST), and dissolved oxygen. Alexandrium catenella thrives in temperate to cold zones and is driven by low SST and high oxygen levels. Alexandrium pacificum mainly inhabits the Temperate Northern Pacific and prefers warmer SST and lower oxygen levels. Alexandrium minutum thrives universally and adapts widely to SST and oxygen. By analyzing the habitat suitability of locations with recorded HAB occurrences, we found that high habitat suitability could serve as a reference indicator for bloom risk. Therefore, we have proposed a qualitative method to spatially assess the harmful algae risk according to the habitat suitability. On the global risk map, coastal temperate seas, such as the Mediterranean, Northwest Pacific, and Southern Australia, faced higher risks. Although HABs currently have restricted geographic distributions, our study found these harmful algae possess high environmental tolerance and can thrive across diverse habitats. HAB impacts could increase if climate changes or ocean conditions became more favorable. Marine transportation may also spread the harmful algae to new unaffected ecosystems. This study has pioneered the assessment of harmful algal risk based on habitat suitability.
Collapse
Affiliation(s)
- Wenjia Hu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shangke Su
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hala F Mohamed
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11751, Egypt
| | - Jiamei Xiao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Jianhua Kang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Bin Xie
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhaohe Luo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Bin Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
2
|
Bui QTN, Pradhan B, Kim HS, Ki JS. Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects. Toxins (Basel) 2024; 16:210. [PMID: 38787062 PMCID: PMC11125744 DOI: 10.3390/toxins16050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The marine dinoflagellate Alexandrium is known to form harmful algal blooms (HABs) and produces saxitoxin (STX) and its derivatives (STXs) that cause paralytic shellfish poisoning (PSP) in humans. Cell growth and cellular metabolism are affected by environmental conditions, including nutrients, temperature, light, and the salinity of aquatic systems. Abiotic factors not only engage in photosynthesis, but also modulate the production of toxic secondary metabolites, such as STXs, in dinoflagellates. STXs production is influenced by a variety of abiotic factors; however, the relationship between the regulation of these abiotic variables and STXs accumulation seems not to be consistent, and sometimes it is controversial. Few studies have suggested that abiotic factors may influence toxicity and STXs-biosynthesis gene (sxt) regulation in toxic Alexandrium, particularly in A. catenella, A. minutum, and A. pacificum. Hence, in this review, we focused on STXs production in toxic Alexandrium with respect to the major abiotic factors, such as temperature, salinity, nutrients, and light intensity. This review informs future research on more sxt genes involved in STXs production in relation to the abiotic factors in toxic dinoflagellates.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
| | - Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea;
- Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea;
| |
Collapse
|
3
|
Phua YH, Tejeda J, Roy MC, Husnik F, Wakeman KC. Bacterial communities and toxin profiles of Ostreopsis (Dinophyceae) from the Pacific Island of Okinawa, Japan. Eur J Protistol 2023; 89:125976. [PMID: 37060793 DOI: 10.1016/j.ejop.2023.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Variations in toxicity of the benthic dinoflagellate Ostreopsis Schmidt 1901 have been attributed to specific molecular clades, biogeography of isolated strains, and the associated bacterial community. Here, we attempted to better understand the biodiversity and the basic biology influencing toxin production of Ostreopsis. Nine clonal cultures were established from Okinawa, Japan, and identified using phylogenetic analysis of the ITS-5.8S rRNA and 28S rRNA genes. Morphological analysis suggests that the apical pore complex L/W ratio could be a feature for differentiating Ostreopsis sp. 2 from the O. ovata species complex. We analyzed the toxicity and bacterial communities using liquid chromatography-mass spectrometry, and PCR-free metagenomic sequencing. Ovatoxin was detected in three of the seven strains of O. cf. ovata extracts, highlighting intraspecies variation in toxin production. Additionally, two new potential analogs of ovatoxin-a and ostreocin-A were identified. Commonly associated bacteria clades of Ostreopsis were identified from the established cultures. While some of these bacteria groups may be common to Ostreopsis (Rhodobacterales, Flavobacteria-Sphingobacteria, and Enterobacterales), it was not clear from our analysis if any one or more of these plays a role in toxin biosynthesis. Further examination of biosynthetic pathways in metagenomic data and additional experiments isolating specific bacteria from Ostreopsis would aid these efforts.
Collapse
Affiliation(s)
- Yong Heng Phua
- School of Science, Hokkaido University, North 10, West 8, Sapporo, Hokkaido 060-0810, Japan; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Javier Tejeda
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Michael C Roy
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, North 10, West 8, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
4
|
Aboualaalaa H, Rijal Leblad B, Hormat-Allah A, Savar V, Ennaskhi I, Hammi I, Elkbiach ML, Ibghi M, Maamour N, Medhioub W, Amzil Z, Laabir M. New insights into the dynamics of causative dinoflagellates and the related contamination of molluscs by paralytic toxins in the southwestern Mediterranean coastal waters of Morocco. MARINE POLLUTION BULLETIN 2022; 185:114349. [PMID: 36410198 DOI: 10.1016/j.marpolbul.2022.114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The distribution of the two potentially toxic dinoflagellates Gymnodinium catenatum and Alexandrium spp. was investigated in the Mediterranean Moroccan Sea from March 2018 to March 2019. The cockle Acanthocardia tuberculata and the smooth clam Callista chione were collected at four stations, and their toxin levels were assessed using the mouse bioassay. The toxin profile was analysed by LC-MS/MS in G. catenatum and in the bivalves harvested in M'diq and Djawn. The species G. catenatum was present throughout the year, whereas Alexandrium spp. was less abundant. The paralytic shellfish toxin (PST) level in cockles was, on average, six times above the sanitary threshold; GTX5 was the major contributor to the total PST level, followed by dc-STX and STX. The toxin level of the smooth clam was considerably lower than that of the cockle; GTX5 and C-toxins were the dominating analogues. Our results suggest the responsibility of G. catenatum for the recurrent PST contamination in the Moroccan Mediterranean Sea, with a west-east gradient.
Collapse
Affiliation(s)
- Hicham Aboualaalaa
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco; Univ Montpelier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| | - Benlahcen Rijal Leblad
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco.
| | - Amal Hormat-Allah
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Veronique Savar
- Ifremer (French Research Institute for Exploitation of the Sea), F-44311 Nantes Cedex 03, France
| | - Ismail Ennaskhi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Ikram Hammi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Mohamed L'Bachir Elkbiach
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco
| | - Mustapha Ibghi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco; Univ Montpelier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| | - Niama Maamour
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Walid Medhioub
- Aquaculture Laboratory, INSTM (National Institute of Marine Science and Technology), Monastir, Tunisia
| | - Zouher Amzil
- Ifremer (French Research Institute for Exploitation of the Sea), F-44311 Nantes Cedex 03, France
| | - Mohamed Laabir
- Univ Montpelier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| |
Collapse
|
5
|
Cheng R, Song X, Song W, Yu Z. A New Perspective: Revealing the Algicidal Properties of Bacillus subtilis to Alexandrium pacificum from Bacterial Communities and Toxins. Mar Drugs 2022; 20:md20100624. [PMID: 36286448 PMCID: PMC9605167 DOI: 10.3390/md20100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Algicidal bacteria are important in the control of toxic dinoflagellate blooms, but studies on the environmental behavior of related algal toxins are still lacking. In this study, Bacillus subtilis S3 (S3) showed the highest algicidal activity against Alexandrium pacificum (Group IV) out of six Bacillus strains. When treated with 0.5% (v/v) S3 bacterial culture and sterile supernatant, the algicidal rates were 69.74% and 70.22% at 12 h, respectively, and algicidal substances secreted by S3 were considered the mechanism of algicidal effect. During the algicidal process, the rapid proliferation of Alteromonas sp. in the phycosphere of A. pacificum may have accelerated the algal death. Moreover, the algicidal development of S3 released large amounts of intracellular paralytic shellfish toxins (PSTs) into the water, as the extracellular PSTs increased by 187.88% and 231.47% at 12 h, compared with the treatment of bacterial culture and sterile supernatant at 0 h, respectively. Although the total amount of PSTs increased slightly, the total toxicity of the algal sample decreased as GTX1/4 was transformed by S3 into GTX2/3 and GTX5. These results more comprehensively reveal the complex relationship between algicidal bacteria and microalgae, providing a potential source of biological control for harmful algal blooms and toxins.
Collapse
Affiliation(s)
- Ruihong Cheng
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-82898587
| | - Weijia Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Jean N, Perié L, Dumont E, Bertheau L, Balliau T, Caruana AMN, Amzil Z, Laabir M, Masseret E. Metal stresses modify soluble proteomes and toxin profiles in two Mediterranean strains of the distributed dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151680. [PMID: 34793790 DOI: 10.1016/j.scitotenv.2021.151680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
HABs involving Alexandrium pacificum have been reported in metal-contaminated ecosystems, suggesting that this distributed species adapts to and/or can tolerate the effects of metals. Modifications in soluble proteomes and PST contents were characterized in two Mediterranean A. pacificum strains exposed to mono- or polymetallic stresses (zinc, lead, copper, cadmium). These strains were isolated from two anthropized locations: Santa Giusta Lagoon (Italy, SG C10-3) and the Tarragona seaport (Spain, TAR C5-4F). In both strains, metals primarily downregulated key photosynthesis proteins. Metals also upregulated other proteins involved in photosynthesis (PCP in both strains), the oxidative stress response (HSP 60, proteasome and SOD in SG C10-3; HSP 70 in TAR C5-4F), energy metabolism (AdK in TAR C5-4F), neoglucogenesis/glycolysis (GAPDH and PEP synthase in SG C10-3) and protein modification (PP in TAR C5-4F). These proteins, possibly involved in adaptive proteomic responses, may explain the development of these A. pacificum strains in metal-contaminated ecosystems. The two strains showed different proteomic responses to metals, with SG C10-3 upregulating more proteins, particularly PCP. Among the PSTs, regardless of the metal and the strain studied, C2 and GTX4 predominated, followed by GTX5. Under the polymetallic cocktail, (i) total PSTs, C2 and GTX4 reached the highest levels in SG C10-3 only, and (ii) total PSTs, C2, GTX5 and neoSTX were higher in SG C10-3 than in TAR C5-4F, whereas in SG C10-3 under copper stress, total PSTs, GTX5, GTX1 and C1 were higher than in the controls, revealing variability in PST biosynthesis between the two strains. Total PSTs, C2, GTX4 and GTX1 showed significant positive correlations with PCP, indicating that PST production may be positively related to photosynthesis. Our results showed that the A. pacificum strains adapt their proteomic and physiological responses to metals, which may contribute to their ecological success in highly anthropized areas.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France.
| | - Luce Perié
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, 30(th) St., New York, NY 10016, USA
| | - Estelle Dumont
- UMR_MD1, Aix-Marseille Univ, U-1261-INSERM, SSA, IRBA, MCT, Marseille, France
| | - Lucie Bertheau
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté, AgroSup Dijon, esplanade Erasme, 21 000 Dijon, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190 Gif-sur-Yvette, France
| | - Amandine M N Caruana
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Zouher Amzil
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Mohamed Laabir
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| | - Estelle Masseret
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| |
Collapse
|
7
|
Algicidal Effects of a High-Efficiency Algicidal Bacterium Shewanella Y1 on the Toxic Bloom-Causing Dinoflagellate Alexandrium pacificum. Mar Drugs 2022; 20:md20040239. [PMID: 35447912 PMCID: PMC9024950 DOI: 10.3390/md20040239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Alexandriumpacificum is a typical toxic bloom-forming dinoflagellate, causing serious damage to aquatic ecosystems and human health. Many bacteria have been isolated, having algicidal effects on harmful algal species, while few algicidal bacteria have been found to be able to lyse A. pacificum. Herein, an algicidal bacterium, Shewanella Y1, with algicidal activity to the toxic dinoflagellate A. pacificum, was isolated from Jiaozhou Bay, China, and the physiological responses to oxidative stress in A. pacificum were further investigated to elucidate the mechanism involved in Shewanella Y1. Y1 exhibited a significant algicidal effect (86.64 ± 5.04% at 24 h) and algicidal activity in an indirect manner. The significant declines of the maximal photosynthetic efficiency (Fv/Fm), initial slope of the light limited region (alpha), and maximum relative photosynthetic electron transfer rate (rETRmax) indicated that the Y1 filtrate inhibited photosynthetic activities of A. pacificum. Impaired photosynthesis induced the overproduction of reactive oxygen species (ROS) and caused strong oxidative damage in A. pacificum, ultimately inducing cell death. These findings provide a better understanding of the biological basis of complex algicidal bacterium-harmful algae interactions, providing a potential source of bacterial agent to control harmful algal blooms.
Collapse
|
8
|
Wang H, Kim H, Park H, Ki JS. Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149801. [PMID: 34454155 DOI: 10.1016/j.scitotenv.2021.149801] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Temperature may affect the production of saxitoxin (STX) and its derivatives (STXs); however, this is still controversial. Further, STX-biosynthesis gene regulation and the relation of its toxicity with temperature are not clearly understood. In the present study, we evaluated the effects of different temperatures (12 °C, 16 °C, and 20 °C) on the growth, toxin profiles, and expression of two core STX-biosynthesis genes, sxtA and sxtG, in the toxic dinoflagellate Alexandrium pacificum Alex05, isolated from Korean coasts. We found that temperature significantly affected cell growth, with maximum growth recorded at 16 °C, followed by 20 °C and 12 °C. HPLC analysis revealed mostly 12 of STXs from the tested cultures. Interestingly, the contents of STXs increased in the cells cultured at 16 °C and exposed to cold stress, compared to the 20 °C culture and heat stress; however, toxin components were much more diverse under heat stress. These toxin profiles generally matched with the sxtA and sxtG expression levels. Incubation at lower temperatures (12 °C and 16 °C) and exposure to cold stress increased sxtA and sxtG expressions in the cells, whereas heat stress showed little change or downregulated the transcription of both genes. Principal component analysis (PCA) showed low correlation between STXs eq and expressional levels of sxtA and sxtG in heat-stressed cells. These results suggest that temperature might be a crucial factor affecting the level and biosynthesis of STXs in marine toxic dinoflagellates.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
9
|
Bui QTN, Kim H, Park H, Ki JS. Salinity Affects Saxitoxins (STXs) Toxicity in the Dinoflagellate Alexandrium pacificum, with Low Transcription of SXT-Biosynthesis Genes sxtA4 and sxtG. Toxins (Basel) 2021; 13:toxins13100733. [PMID: 34679026 PMCID: PMC8539879 DOI: 10.3390/toxins13100733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Salinity is an important factor for regulating metabolic processes in aquatic organisms; however, its effects on toxicity and STX biosynthesis gene responses in dinoflagellates require further elucidation. Herein, we evaluated the physiological responses, toxin production, and expression levels of two STX synthesis core genes, sxtA4 and sxtG, in the dinoflagellate Alexandrium pacificum Alex05 under different salinities (20, 25, 30, 35, and 40 psu). Optimal growth was observed at 30 psu (0.12 cell division/d), but cell growth significantly decreased at 20 psu and was irregular at 25 and 40 psu. The cell size increased at lower salinities, with the highest size of 31.5 µm at 20 psu. STXs eq was highest (35.8 fmol/cell) in the exponential phase at 30 psu. GTX4 and C2 were predominant at that time but were replaced by GTX1 and NeoSTX in the stationary phase. However, sxtA4 and sxtG mRNAs were induced, and their patterns were similar in all tested conditions. PCA showed that gene transcriptional levels were not correlated with toxin contents and salinity. These results suggest that A. pacificum may produce the highest amount of toxins at optimal salinity, but sxtA4 and sxtG may be only minimally affected by salinity, even under high salinity stress.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
10
|
Mao XT, Xu RX, Gao Y, Li HY, Liu JS, Yang WD. Allelopathy of Alexandrium pacificum on Thalassiosira pseudonana in laboratory cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112123. [PMID: 33721666 DOI: 10.1016/j.ecoenv.2021.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Alexandrium pacificum is a toxin-producing dinoflagellate with allelopathic effects. The elucidation of allelopathic mechanism of A. pacificum is of great significance for understanding A. pacificum blooms. To this end, using the model diatom Thalassiosira pseudonana as a target species, we observed changes in physiological, biochemical and gene transcription of T. pseudonana upon being co-cultured with A. pacificum. We found reciprocal effects between A. pacificum and T. pseudonana, and corroborated A. pacificum's allelopathy on T. pseudonana by observing inhibitory effects of filtrate from A. pacificum culture on the growth of T. pseudonana. We also found that co-culturing with A. pacificum, the expression of T. pseudonana genes related to photosynthesis, oxidative phosphorylation, antioxidant system, nutrient absorption and energy metabolism were drastically influenced. Coupled with the alterations in Fv/Fm (the variable/maximum fluorescence ratio), activity of superoxide dismutase, contents of malondialdehyde, neutral lipid and total protein in T. pseudonana co-cultured with A. pacificum, we propose that A. pacificum allelopathy could reduce the efficiency of photosynthesis and energy metabolism of T. pseudonana and caused the oxidative stress, while the nutrient absorption was also affected by allelopathic effects. The resultant data potentially uncovered the allelopathic molecular mechanism of A. pacificum to model alga T. pseudonana. The changes in nutrient uptake and even energy metabolism in T. pseudonana, as an adaptation to environmental conditions, may prevent it from stress-related injuries. Our finding might advance the understanding of allelopathic mechanism of A. pacificum.
Collapse
Affiliation(s)
- Xiao-Tong Mao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Xia Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Gao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Geffroy S, Lechat MM, Le Gac M, Rovillon GA, Marie D, Bigeard E, Malo F, Amzil Z, Guillou L, Caruana AMN. From the sxtA4 Gene to Saxitoxin Production: What Controls the Variability Among Alexandrium minutum and Alexandrium pacificum Strains? Front Microbiol 2021; 12:613199. [PMID: 33717003 PMCID: PMC7944994 DOI: 10.3389/fmicb.2021.613199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Paralytic shellfish poisoning (PSP) is a human foodborne syndrome caused by the consumption of shellfish that accumulate paralytic shellfish toxins (PSTs, saxitoxin group). In PST-producing dinoflagellates such as Alexandrium spp., toxin synthesis is encoded in the nuclear genome via a gene cluster (sxt). Toxin production is supposedly associated with the presence of a 4th domain in the sxtA gene (sxtA4), one of the core genes of the PST gene cluster. It is postulated that gene expression in dinoflagellates is partially constitutive, with both transcriptional and post-transcriptional processes potentially co-occurring. Therefore, gene structure and expression mode are two important features to explore in order to fully understand toxin production processes in dinoflagellates. In this study, we determined the intracellular toxin contents of twenty European Alexandrium minutum and Alexandrium pacificum strains that we compared with their genome size and sxtA4 gene copy numbers. We observed a significant correlation between the sxtA4 gene copy number and toxin content, as well as a moderate positive correlation between the sxtA4 gene copy number and genome size. The 18 toxic strains had several sxtA4 gene copies (9-187), whereas only one copy was found in the two observed non-toxin producing strains. Exploration of allelic frequencies and expression of sxtA4 mRNA in 11 A. minutum strains showed both a differential expression and specific allelic forms in the non-toxic strains compared with the toxic ones. Also, the toxic strains exhibited a polymorphic sxtA4 mRNA sequence between strains and between gene copies within strains. Finally, our study supported the hypothesis of a genetic determinism of toxin synthesis (i.e., the existence of several genetic isoforms of the sxtA4 gene and their copy numbers), and was also consistent with the hypothesis that constitutive gene expression and moderation by transcriptional and post-transcriptional regulation mechanisms are the cause of the observed variability in the production of toxins by A. minutum.
Collapse
Affiliation(s)
| | | | | | | | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Laure Guillou
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | | |
Collapse
|