1
|
Qasim M, Su J, Noman A, Ma T, Islam W, Hussain D, Rizwan M, Hameed MS, Khan KA, Ghramh HA, Wang L, Han X. Citrus psyllid management by collective involvement of plant resistance, natural enemies and entomopathogenic fungi. Microb Pathog 2024; 197:107047. [PMID: 39442809 DOI: 10.1016/j.micpath.2024.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Crops face constant threats from insect pests, which can lead to sudden disasters and global famine. One of the most dangerous pests is the Asian citrus psyllid (ACP), which poses a significant threat to citrus plantations worldwide. Effective and adaptive management strategies to combat ACP are always in demand. Plant resistance (PR) is a key element in pest management, playing crucial roles such as deterring pests through antifeedant and repellant properties, while also attracting natural enemies of these pests. One effective and innovative approach is the use of entomopathogenic fungi (EPF) to reduce pest populations. Additionally, other natural enemies play an important role in controlling certain insect pests. Given the significance of PR, EPF, and natural arthropod enemies (NAE), this review highlights the benefits of these strategies against ACP, drawing on successful examples from recent research. Furthermore, we discuss how EPF can be effectively utilized in citrus orchards, proposing strategies to ensure its efficient use and safeguard food security in the future.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China; State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Su
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Ting Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Dilbar Hussain
- Department of Entomology, Ayub Agriculture Research Institute, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
2
|
Huang J, Qasim M, Zhou R, Han X, Ansari MJ, Almoallim HS, Alkherb WAH, Wang L. Role of chitinase expression in the virulence of Lecanicillium lecanii against citrus black aphid (Toxoptera aurantii). Int J Biol Macromol 2024; 276:133970. [PMID: 39029816 DOI: 10.1016/j.ijbiomac.2024.133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Chitinase plays a vital role in the virulence of entomopathogenic fungi (EPF) when it infects host insects. We used gene recombination technology to express chitinase of three strains of Lecanicillium lecanii: Vl6063, V3450, and Vp28. The ORF of ChitVl6063, ChitV3450 and ChitVp28 were inserted into the fungal expression vector pBARGPE-1, which contained strong promoter and terminator, respectively, to construct a chitinase overpressing plasmid, then transformed the wild-type strain with blastospore transformation method. The virulence of the three recombinant strains against Toxoptera aurantii was improved by overproduction of ChitVl6063, ChitV3450, and ChitVp28, as demonstrated by significantly lower 3.43 %, 1.72 %, and 1.23 % fatal doses, respectively, according to an insect bioassay. Similarly, lethal times of recombinants (ChitVl6063, ChitV3450 and ChitVp28) were also decreased up to 29.51 %, 30.46 % and 33.90 %, respectively, compared to the wild-type strains. Improving the expression of chitinase is considered as an effective method for the enhancement of the EPF value. The efficacy could be enhanced using recombinant technology, which provides a prospecting view for future insecticidal applications.
Collapse
Affiliation(s)
- Jing Huang
- Zhangzhou Institute of Technology, Zhangzhou, 363000, Fujian, China; State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832002, China.
| | - Ran Zhou
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832002, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | | | - Liande Wang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Shahbaz M, Palaniveloo K, Tan YS, Palasuberniam P, Ilyas N, Wiart C, Seelan JSS. Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities. World J Microbiol Biotechnol 2024; 40:217. [PMID: 38806748 DOI: 10.1007/s11274-024-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Sabah, Malaysia
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
4
|
Kim JC, Hwang IM, Kim HM, Kim S, Shin TS, Woo SD, Park HW. Rapid analysis of insecticidal metabolites from the entomopathogenic fungus Beauveria bassiana 331R using UPLC-Q-Orbitrap MS. Mycotoxin Res 2024; 40:123-132. [PMID: 37968430 DOI: 10.1007/s12550-023-00509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Beauveria bassiana, a representative entomopathogenic fungus, is increasingly being utilized as an eco-friendly pest management alternative to chemical insecticides. This fungus produces a range of insecticidal secondary metabolites that act as antimicrobial and immunosuppressive agents. However, detailed qualitative and quantitative analysis related to these compounds remains scarce, we developed a method for the rapid analysis of these metabolites. Eight secondary metabolites (bassianin, bassianolide, beauvericin, beauveriolide I, enniatin A, A1, and B, and tenellin) were efficiently extracted when B. bassiana-infected Tenebrio molitor larvae were ground in 70% EtOH extraction solvent and subsequently subjected to ultrasonic treatment for 30 min. The eight metabolites were rapidly and simultaneously analyzed using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). Bassianolide (20.6-51.1 µg/g) and beauvericin (63.6-109.8 µg/g) were identified as the main metabolites in B. basssiana-infected larvae, indicating that they are likely major toxins of B. bassiana. Validation of the method exhibited recovery rates in the range of 80-115% and precision in the range of 0.1-8.0%, indicating no significant interference from compounds in the matrix. We developed a method to rapidly analyze eight insecticidal metabolites using UPLC-Q-Orbitrap MS. This can be extensively utilized for detecting and producing insecticidal fungal secondary metabolites.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - In Min Hwang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
- Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Teak Su Shin
- R&D Center, Solvm Co., Ltd., Daejeon, 34014, Republic of Korea
| | - Soo-Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
5
|
Lu Y, Wang Z, Wang Y, Chen Y, Tang D, Yu H. Genomic Comparison of Two Species of Samsoniella with Other Genera in the Family Cordycipitaceae. J Fungi (Basel) 2023; 9:1146. [PMID: 38132747 PMCID: PMC10744563 DOI: 10.3390/jof9121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Whole genomes of Samsoniella hepiali ICMM 82-2 and S. yunnanensis YFCC 1527 were sequenced and annotated, as well as compared with whole genome sequences of other species in the family Cordycipitaceae. S. hepiali ICMM 82-2, S. hepiali FENG and S. yunnanensis YFCC 1527 had 54, 57 and 58 putative secondary metabolite biosynthetic gene clusters, respectively. S. hepiali had one unique domain and S. yunnanensis YFCC 1527 six. Both S. hepiali and S. yunnanensis YFCC 1527 had curvupallide-B, fumosorinone and fujikurin putative biosynthetic gene clusters. C. javanica had biosynthetic gene clusters for fumonisin. The 14 genomes had common domains, namely A-P-C-P-C and KS-AT-DH-ER-KR-ACP. The A-P-C-P-C domain may be involved in the biosynthesis of dimethylcoprogen. The maximum likelihood and the Bayesian inference trees of KS-AT-DH-ER-KR-ACP were highly consistent with the multigene phylogenetic tree for the 13 species of Cordycipitaceae. This study facilitates the discovery of novel biologically active SMs from Cordycipitaceae using heterologous expression and gene knockdown methods.
Collapse
Affiliation(s)
- Yingling Lu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China; (Y.L.); (Z.W.); (Y.C.); (D.T.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Zhiqin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China; (Y.L.); (Z.W.); (Y.C.); (D.T.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Yue Chen
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China; (Y.L.); (Z.W.); (Y.C.); (D.T.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China; (Y.L.); (Z.W.); (Y.C.); (D.T.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China; (Y.L.); (Z.W.); (Y.C.); (D.T.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| |
Collapse
|
6
|
Perumal V, Kannan S, Alford L, Pittarate S, Mekchay S, Reddy GVP, Elangovan D, Marimuthu R, Krutmuang P. Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate-derived chemical molecules: An eco-friendly anti-malarial drug and insecticide. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-19. [PMID: 37497800 DOI: 10.1002/arch.22037] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Gadi V P Reddy
- USDA-ARS-Southern Insect Management Research Unit, Stoneville, Mississippi, USA
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Domingues MM, Dos Santos PL, Gêa BCC, de Carvalho VR, de Oliveira FN, Soliman EP, Serrão JE, Zanuncio JC, Zanetti R, Wilcken CF. Entomopathogenic Fungi, Isolated From Soils and Bemisia tabaci (Hemiptera: Aleyrodidae) Adults, to Manage the Eucalyptus Red Gum Lerp Psyllid Glycaspis brimblecombei (Hemiptera: Aphalaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1886-1893. [PMID: 36300524 DOI: 10.1093/jee/toac165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 06/16/2023]
Abstract
The parasitoid Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), entomopathogenic fungi, and chemical insecticides are the main strategies to manage the eucalypts pest Glycaspis brimblecombei Moore. The objective of this study was to isolate and to identify entomopathogenic fungi, collected from Bemisia tabaci Gennadius adults in soybean and tomato crops, and from soil samples in eucalypts, soybean, and native forest areas to evaluate their potential to manage G. brimblecombei. Twelve Beauveria and Cordyceps isolates were selected and compared with the commercial products Boveril Beauveria bassiana Bals. (Hypocreales: Cordycipitaceae), Metarril Metarhizium anisopliae Metschn. (Hypocreales: Clavicipitaceae), and Octane Cordyceps fumosorosea Wize (Hypocreales: Cordycipitaceae) and their respective strains. The fungal isolates were diluted in 0.1% aqueous Tween 80 at a concentration of 1.0 × 108 conidia/ml and sprayed on the G. brimblecombei nymphs with or without lerps. Pest mortality was higher and the TL50 and TL90 lower with the isolates LCBPF 11 C. javanica Frieder. & Bally (Hypocreales: Cordycipitaceae), LCBPF 12 (C. fumosorosea), and LCBPF 67 (C. fumosorosea) from B. tabaci adults. Fungi of the genera Beauveria and Cordyceps developed and caused high mortality of G. brimblecombei nymphs with lerps. The B. bassiana, C. cateniannulata Liang (Hypocreales: Cordycipitaceae), C. fumosorosea, C. javanica, and M. anisopliae isolates showed potential to manage G. brimblecombei. The lerp of this insect enhances entomopathogenic fungus development as a source of inoculum accelerating G. brimblecombei nymph mortality. Entomopathogenic fungi isolated from insects and soils are effective against G. brimblecombei and the presence of the lerp of this insect increases the effectiveness of its control.
Collapse
Affiliation(s)
- Maurício Magalhães Domingues
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Paula Leite Dos Santos
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Bianca Cristina Costa Gêa
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Vanessa Rafaela de Carvalho
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Fabricio Naka de Oliveira
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Everton Pires Soliman
- Suzano Papel e Celulose/Tecnologia Florestal, Av. Dr. José Lembo, 1010, 18207-78 - Itapetininga, São Paulo, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Ronald Zanetti
- Departamento de Entomologia, Universidade Federal de Lavras, 37200-900, Lavras, Minas Gerais, Brasil
| | - Carlos Frederico Wilcken
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| |
Collapse
|
8
|
Evaluation of Modified Date Palm (Phoenix dactylifera L.) Mucilage as a Potential Pharmaceutical Excipient. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3923812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Investigation on natural sources from plants, animals, and microorganisms that produce gums and mucilages goes on increasing day by day to check their pharmaceutical applications. Different mucilages have been studied for their pharmaceutical effects but the use of date palm (Phoenix dactylifera L.) mucilage as a pharmaceutical excipient is still under the cover. The aim of this study was therefore to evaluate and compare the flow property and binding ability of crude, purified, modified (hydrolyzed and grafted), green synthesized nanoparticles (Zinc oxide (ZnO), cuperic oxide (CuO), silver (Ag), and gold (Au)) of date palm mucilage with hydroxy propyl methyl cellulose (HPMC) and commercially available paracetamol tablets. Previously purified mucilage (with 58.4% yield) was subjected to modification (i.e., acidic, basic, and enzymatic), grafting (polyacrylamide), and green synthesis of nanoparticles. Flow properties of powdered (granular) crude, purified, modified, and nanoparticles were studied and compared with flow properties of HPMC and paracetamol tablet granules. Tablets were made using granules of all types of date palm mucilage (discussed above), HPMC, and granules of paracetamol tablets to study and compare weight uniformity, hardness, friability, dissolution rate, and disintegration time. When 100 mg/kg of mucilage sample was given to mice no oral toxicity was found. The results obtained during this study were within the acceptable ranges given in pharmacopeias. The pseudoplastic flow behavior, hygroscopic nature, increased solubility, and swelling index across the increase in temperature, hardness of the tablets, friability, and drug release behavior were found better than HPMC and the binders used in commercially available paracetamol, hence making the date palm mucilage (crude, purified, and modified) an excellent excipient to be used in pharmaceutical dosage forms.
Collapse
|
9
|
Xu P, Fan X, Mao Y, Cheng H, Xu A, Lai W, Lv T, Hu Y, Nie Y, Zheng X, Meng Q, Wang Y, Cernava T, Wang M. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res 2022; 39:49-60. [PMID: 35777916 PMCID: PMC9263646 DOI: 10.1016/j.jare.2021.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A broad spectrum of rhizosphere bacteria and fungi were shown to play a central role for health, fitness and productivity of their host plants. However, implications of host metabolism on microbiota assembly in the phyllosphere and potential consequences for holobiont functioning were sparsely addressed. Previous observations indicated that tea plants might reduce disease occurrence in various forests located in their proximity; the underlying mechanisms and potential implications of the phyllosphere microbiota remained elusive. OBJECTIVES This study aimed atdeciphering microbiome assembly in the tea plant phyllosphere throughout shoot development as well as elucidating potential implications of host metabolites in this process. The main focus was to explore hidden interconnections between the homeostasis of the phyllosphere microbiome and resistance to fungal pathogens. METHODS Profiling of host metabolites and microbiome analyses based on high-throughput sequencing were integrated to identify drivers of microbiome assembly throughout shoot development in the phyllosphere of tea plants. This was complemented by tracking of beneficial microorganisms in all compartments of the plant. Synthetic assemblages (SynAss), bioassays and field surveys were implemented to verify functioning of the phyllosphere microbiota. RESULTS Theophylline and epigallocatechin gallate, two prevalent metabolites at the early and late shoot development stage respectively, were identified as the main drivers of microbial community assembly. Flavobacterium and Myriangium were distinct microbial responders at the early stage, while Parabacteroides and Mortierella were more enriched at the late stage. Reconstructed, stage-specific SynAss suppressed various tree phytopathogens by 13.0%-69.3% in vitro and reduced disease incidence by 8.24%-41.3% in vivo. CONCLUSION The findings indicate that a functional phyllosphere microbiota was assembled along with development-specific metabolites in tea plants, which continuously suppressed prevalent fungal pathogens. The insights gained into the temporally resolved metabolite response of the tea plant microbiota could provide novel solutions for disease management.
Collapse
Affiliation(s)
- Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Wanyi Lai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tianxing Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Zhejiang Academy of Forestry, Hangzhou 310023, Zhejiang, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuxia Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria.
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Maluta N, Castro T, Lopes JRS. Entomopathogenic fungus disrupts the phloem-probing behavior of Diaphorina citri and may be an important biological control tool in citrus. Sci Rep 2022; 12:7959. [PMID: 35562575 PMCID: PMC9106691 DOI: 10.1038/s41598-022-11789-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Citrus is among the most important fruit crops worldwide; however, numerous pests and diseases affect the orchards, increasing production costs. The psyllid Diaphorina citri, is a vector of the phloem-limited bacteria ‘Candidatus Liberibacter spp.’, the causal agent of Huanglongbing (HLB) disease. The lack of a cure for HLB requires management of the vector, mainly by intensive use of chemical insecticides, leading to the selection of resistant populations. Our study determined the effects of the entomopathogenic fungus Cordyceps fumosorosea on the probing behavior of D. citri at different time points after the fungus was applied by spraying. The electrical penetration graph technique was used to monitor the stylet activities of D. citri after application of the microbiological product. The effects were more pronounced between 30 and 96 h after the insects were sprayed, with significant disruption of the stylet activities related to the phloem and directly associated with the transmission of HLB. Our study indicated that the microbiological product Challenger®, with the active ingredient C. fumosorosea fungus, can significantly change the probing behavior of D. citri, may be helpful in more-sustainable management of the vector, and can be used to reduce the spread of HLB.
Collapse
Affiliation(s)
- Nathalie Maluta
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13418-900, Brazil.
| | - Thiago Castro
- Koppert Biological Systems, Rodovia Margarida da Graça Martins s/n-Km 17,5, Piracicaba, SP, 13400-970, Brazil
| | - João Roberto Spotti Lopes
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
11
|
Mushtaq S, Shafiq M, Ashraf T, Haider MS, Atta S, Almaary KS, Elshikh MS. Enumeration of citrus endophytic bacterial communities based on illumine metagenomics technique. PLoS One 2022; 17:e0263144. [PMID: 35417473 PMCID: PMC9007379 DOI: 10.1371/journal.pone.0263144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Citrus is a valuable crop in Pakistan. It is rich in vitamin C, other nutrients and antioxidants. Huanglongbing (HLB) caused by a bacterium “Candidatus liberibacter asiaticus” (CLas), africanus and americanus has an influence on citrus production around the world. Beside HLB there exist several other bacterial species in citrus groves in Pakistan. The structure and diversity of bacterial species in various ecosystems can be quickly examined using NGS. This approach is considerably quicker and more precise than outdated methods. Healthy or citrus greening infected leaf samples of Grapefruit (Citrus paradisi), C. aurantifolia, and C. reticulata Blanco were used for diversity analysis. In this study high throughput, NGS technique was used to access the population of both cultivable and non-cultivable bacterial endophytes from citrus leaves, by using PCR amplicons of 16S rDNA sequences (V5–V7 regions) with Illumina Hi seq. As a result, a total number of 68,722 sequences were produced from the test samples. According to the NGS-based diversity classification, the most common genera of exploited bacterial endophytes were Proteobacteria, Firmicutes, Bacteroides, Cyanobacteria, and Actinobacteria. C. aurantifolia and C. paradisi showed almost equal diversity, whereas C. reticulata Blanco had a higher proportion of Proteobacteria and Cyanobacteria in their leaves. To determine alpha diversity (AD), additional data was analyzed using statistical indices such as Shannon, Chao1, and Simpson. According to the inverse Simpson diversity index, the abundance of the microbial population in six different citrus samples was 0.48, 0.567, and 0.163, respectively. The metagenomics of microbiota in plant tissues was successfully recorded by NGS technology, which can help us learn more about the interactions between plants and microbes. This research is the first step toward a better understanding of 16SrRNA-based metagenomics from citrus in Pakistan using Illumina (Hi seq) Technology.
Collapse
Affiliation(s)
- Sehrish Mushtaq
- Faculty of Agricultural Sciences, Department of Plant Pathology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Shafiq
- Faculty of Agricultural Sciences, Department of Horticulture Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Tehseen Ashraf
- Department of Horticulture Sciences University of Sargodha, Sargodha, Pakistan
| | - Muhammad Saleem Haider
- Faculty of Agricultural Sciences, Department of Plant Pathology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Sagheer Atta
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University Dera Ghazhi Khan, Punjab, Pakistan
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, United States of America
- * E-mail:
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Yoon KA, Kim WJ, Lee SH. Expression profiles of venom components in some social hymenopteran species over different post-capture periods. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109247. [PMID: 34826612 DOI: 10.1016/j.cbpc.2021.109247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
Abstract
To explore and compare the expression patterns of venom components depending on post-capture periods, venom gland-specific transcriptome and proteome analyses were conducted for five model hymenopteran species at a series of time points after capture. Venom gland-specific genes with signal sequences were considered as putative venom component genes. Expression patterns of venom gland-specific genes in all the social wasps and bees examined varied considerably depending on the post-capture period. Higher numbers of venom genes exhibited a decreasing expression pattern than an increasing pattern as the capture period increased. For example, genes encoding most of the allergens (dipeptidyl peptidase 4, endocuticle structural glycoprotein, odorant-binding protein, phospholipase A1, A2, B1, serine protease, serine protease inhibitor and venom allergen 5), pain-producing factor (mast cell degranulating peptide), and paralyzing factor (neprilysin) commonly exhibited decreasing expression patterns in all of the hymenopteran species tested, except for some of the major venom genes in Apis mellifera and Bombus ignitus, which showed an increasing pattern. These findings indicate species- or group-specific variations in the expression patterns of major venom genes. Taken together, flash freezing in liquid nitrogen immediately after capture was determined to be the best way to obtain the most natural expression profiles of venom components in social wasp species, thus, enabling a better understanding of the toxic potential of venom in wasp sting accidents. This study provides guidance for establishing optimal protocols for venom gland isolation and venom extraction from wasps and bees that can ensure the most naturally represented venom composition.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woo-Jin Kim
- EntoCode Co., Seoul 06028, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
DOMINGUES MAURÍCIOM, SANTOS PAULAL, GÊA BIANCAC, CARVALHO VANESSAR, OLIVEIRA FABRICION, SOLIMAN EVERTONP, PEREIRA FABRICIOF, ZANUNCIO JOSÉC, WILCKEN CARLOSF. Cordyceps cateniannulata and Cordyceps javanica: first report of pathogenicity to Glycaspis brimblecombei (Hemiptera: Aphalaridae). AN ACAD BRAS CIENC 2022; 94:e20211566. [DOI: 10.1590/0001-3765202220211566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
|
14
|
Tayyab M, Islam W, Noman A, Pang Z, Li S, Lin S, Wenxiong L, Hua Z. Sugarcane cultivars manipulate rhizosphere bacterial communities' structure and composition of agriculturally important keystone taxa. 3 Biotech 2022; 12:32. [PMID: 35070622 PMCID: PMC8724486 DOI: 10.1007/s13205-021-03091-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/09/2021] [Indexed: 01/03/2023] Open
Abstract
Different sugarcane cultivars are grown to produce renewable energy and sugar in China. However, we have a limited awareness of the interactive influence of varying sugarcane cultivars on rhizosphere bacterial structure and diversity. Assessing cultivar choice impact on soil bacterial communities is vital since bacterial taxa are frequently impacted by planting performance. Employing high-throughput Illumina sequencing, we examined bacterial communities' assemblage in the rhizosphere of six Chinese sugarcane cultivars (Regan14-62, Guitang 08-120, Haizhe 22, Guitang 08-1180, Taitang 22 and Liucheng 05-136). Our results indicated that different sugarcane cultivars have no significant influence on the Shannon index; however, their impact on richness was substantial. There was a difference in the bacterial community structure that is also associated with a change in the community composition, as determined by the DESeq2 results, suggesting that "Haizhe 22 (HZ22)" had a completely different beta diversity as compared to other five cultivars by enriching abundance of Firmicutes, Proteobacteria, Gemmatimonadetes, Saccharibacteria and Bacteroidetes and reducing the quantity of Actinobacteria, Chloroflexi, Acidobacteria, and Planctomycetes, respectively. The HZ22 rhizosphere significantly enriched six genera (e.g., Devosia, Mizugakiibacter, Mycobacterium, Nakamurella, Rhizomicrobium, and Virgibacillus) relative to other varieties, suggesting an important role in plant disease tolerance and growth development, including soil nutrient cycling and bioremediation. Analysis of similarity (ANOSIM) and correlation analysis revealed that cultivars, soil organic matter, pH and soil moisture were central factors influencing bacterial composition. These findings may help in selection of plant cultivars capable of supporting highly abundant specific beneficial microbial groups, improving plant disease resistance, growth stimulation, and soil bioremediation capabilities, further leading to improvements in breeding strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03091-1.
Collapse
Affiliation(s)
- Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Waqar Islam
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ali Noman
- Department of Botany, Govt. College University Faisalabad, Faisalabad, Pakistan
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shiyan Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lin Wenxiong
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
15
|
Altimira F, De La Barra N, Godoy P, Roa J, Godoy S, Vitta N, Tapia E. Lobesia botrana: A Biological Control Approach with a Biopesticide Based on Entomopathogenic Fungi in the Winter Season in Chile. INSECTS 2021; 13:insects13010008. [PMID: 35055851 PMCID: PMC8780027 DOI: 10.3390/insects13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary Lobesia botrana, also known as the European grapevine moth, is one of the main pests that affect grapes. In Chile, this type of moth is classified as a quarantine pest, which requires fumigating the fruit with methyl bromide to prevent the immature stages of the pest from being strained and reaching the export-destination countries. In the fields, the larvae of this moth feed on grapes, which can introduce diseases such as Botrytis cinerea, thereby increasing the costs of managing the crop. One way to control this pest is to use entomopathogenic fungi on the winter pupae to reduce moth populations in the spring. In the present study, six fungi were characterized, formulated, and evaluated. The selected strains RGM 2184 and RGM 678 were evaluated in two regions of Chile during two seasons. These strains reached maximum efficiencies of 80% and 88%, respectively. Therefore, the use of entomopathogenic fungi is an environmentally friendly alternative to control L. botrana and reduce the use of chemical pesticides. Abstract Lobesia botrana (Denis and Shiffermüller) (Lepidoptera: Tortricidae) is one of the main pests that affect the production and export of table grapes in Chile. Because this pest has quarantine status, the fruit must be fumigated with methyl bromide, which reduces the fruit’s export competitiveness in the destination market. In the present study, to help resolve this issue, six native entomopathogenic fungi were identified through multilocus analysis, including three Beauveria pseudobassiana and three Metarhizium robertsii. These fungi were evaluated in the laboratory to control L. botrana in its pupal stage in a silk cocoon and compared against a biological control product. Formulations with additional carbon sources improved the performance of the fungi. The treatments with outstanding performance contained the fungal strains B. pseudobassiana RGM 2184 and M. robertsii RGM 678. These strains were evaluated in the field during the winter season in two different regions of the country; the strains reached maximum efficacies of 80% and 88%, respectively, at 21 days post first application. Therefore, entomopathogenic fungi can contribute to reducing pupal populations in winter, thereby decreasing the moth population in spring–summer.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratory of Entomology and Biotechnology, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (F.A.); (S.G.); (N.V.)
| | - Nathalia De La Barra
- Programa Nacional de Lobesia botrana Región Metropolitana, Servicio Agrícola y Ganadero, Santiago 9170009, Chile;
| | - Paulo Godoy
- Extension Department, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (P.G.); (J.R.)
| | - Juan Roa
- Extension Department, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (P.G.); (J.R.)
| | - Sebastián Godoy
- Laboratory of Entomology and Biotechnology, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (F.A.); (S.G.); (N.V.)
| | - Nancy Vitta
- Laboratory of Entomology and Biotechnology, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (F.A.); (S.G.); (N.V.)
| | - Eduardo Tapia
- Laboratory of Entomology and Biotechnology, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago 8831314, Chile; (F.A.); (S.G.); (N.V.)
- Correspondence:
| |
Collapse
|
16
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Characterization and Toxicity of Crude Toxins Produced by Cordyceps fumosorosea against Bemisia tabaci (Gennadius) and Aphis craccivora (Koch). Toxins (Basel) 2021; 13:toxins13030220. [PMID: 33803611 PMCID: PMC8003032 DOI: 10.3390/toxins13030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cordyceps fumosorosea, an insect pathogenic fungus, produces different toxins/secondary metabolites which can act as pest control agents. This study reports the extraction and characterization of crude mycelial extracts of C. fumosorosea isolate SP502 along with their bio-efficacy against Bemisia tabaci and Aphis craccivora. Fourier transform infrared spectroscopy, liquid chromatography, mass spectrometery and nuclear magnetic resonance analysis of C. fumosorosea isolate SP502 extracts showed the presence of five major compounds—Trichodermin, 5-Methylmellein, Brevianamide F, Enniatin and Beauvericin—which all may potentially be involved in insecticidal activity. The HPLC analysis of C. fumosorosea mycelial extracts and Beauvericin standard showed similar chromatographic peaks, with the content of Beauvericin in the crude toxin being calculated as 0.66 mg/ml. The median lethal concentrations of C. fumosorosea mycelial extracts towards first, second, third and fourth instar nymphs of A. craccivora were 46.35, 54.55, 68.94, and 81.92 µg/mL, respectively. The median lethal concentrations of C. fumosorosea mycelial extracts towards first, second, third and fourth instar nymphs of B. tabaci were 62.67, 72.84, 77.40, and 94.40 µg/mL, respectively. Our results demonstrate that bioactive compounds produced by C. fumosorosea isolate SP502 have insecticidal properties and could, therefore, be developed into biopesticides for the management of B. tabaci and A. craccivora.
Collapse
|
18
|
Al-Qahtani WH. Assessing Spirulina platensis as a dietary supplement and for toxicity to Rhynchophorus ferrugineus (Coleoptera: Dryopthoridae). Saudi J Biol Sci 2021; 28:1801-1807. [PMID: 33732065 PMCID: PMC7938130 DOI: 10.1016/j.sjbs.2020.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022] Open
Abstract
Insects are important for humanity; play role in crop pollination, and biocontrol of harmful pests. The red palm weevil, Rhynchophorus ferrugineus, is a major pest of date palms and has become a serious threat. Scientists needs ample numbers of insects for bioassays to explore control options. The alga Spirulina platensis, is enriched by protein, natural vitamins, minerals, and amino acids, stimulate the development of organisms that feed on it. I assessed the value of Spirulina as a nutritional supplement for red palm weevil larvae by adding its various percentages to the artificial diet. Once a week, the larvae were removed from the containers, washed with distilled water, dried, weighed using an electronic scale, returned to a new container, and supplied with Spirulina mixed fresh diet. Larvae fed with lower concentrations showed vigorous growth and significant weight gain. Particularly, larvae fed 0.5%, 1%, and 2% Spirulina powder supplementation to their diet were healthier and gained more weight than larvae reared with >5% concentration. Overall 40% mortality was recorded in larvae fed with 10% concentration. Higher concentrations were lethal, and all larvae died within two weeks when fed 20% Spirulina. The present research findings indicate that Spirulina used in concentrations from 0.5% to below 5% had a beneficial effect on red palm weevil larval growth but a detrimental effect and even mortality was recorded when used ≥5%.
Collapse
Affiliation(s)
- Wahidah H. Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|