1
|
Qin Y, Wang N, Pan H, Lei X, Li X. Hellenia speciosa: A comprehensive review of traditional applications, phytonutrients, health benefits and safety. Food Chem 2025; 465:142003. [PMID: 39581103 DOI: 10.1016/j.foodchem.2024.142003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Hellenia speciosa (H. speciosa) is not only recognized for its nutritional benefits, but is also revered as a traditional medicinal plant with diverse biological activities. H. speciosa is a perennial herb that is abundant in phytonutrients, including important nutrients such as proteins, amino acids, and vitamins, as well as potent bioactive components like steroids, terpenes, and volatile oils. Among them, steroids and terpenoids are the main bioactive components in H. speciosa, and they are also the two most abundant compounds in it. H. speciosa has a variety of pharmacological effects, such as anti-inflammatory, antidiabetic, and antimicrobial, which is consistent with its traditional use as a folk medicine. Based on its traditional uses, phytonutrients, and health benefits, H. speciosa is considered a valuable medicinal and edible plant. This review provides a comprehensive overview and critical analysis of recent advancements in research on H. speciosa, serving as a valuable reference for future investigations and rational exploitation of this plant.
Collapse
Affiliation(s)
- Ying Qin
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province &Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Na Wang
- Department of Pharmacy, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| | - Hao Pan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province &Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Xia Lei
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu CM Clinial Innovation Center of Degenerative Bone& Joint Disease, Wuxi, China.
| | - Xiaoliang Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province &Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Lv Q, Xu W, Yang F, Li J, Wei W, Chen X, Liu Y, Zhang Z. Protective and Detoxifying Effects of Resveratrol on Zearalenone-Mediated Toxicity: A Review. Int J Mol Sci 2024; 25:11003. [PMID: 39456789 PMCID: PMC11507252 DOI: 10.3390/ijms252011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals. Through oxidative stress, immunosuppression, apoptosis, autophagy, and mitochondrial dysfunction, ZEA leads to hepatitis, neurodegenerative diseases, cancer, abortion, and stillbirth in female animals, and decreased sperm motility in male animals. In recent years, due to the influence of climate, storage facilities, and other factors, the problem of ZEA pollution in global food crops has become particularly prominent, resulting in serious problems for the animal husbandry and feed industries, and threatening human health. Resveratrol (RSV) is a natural product with therapeutic activities such as anti-inflammatory, antioxidant, and anticancer properties. RSV can alleviate ZEA-induced toxic effects by targeting signaling pathways such as NF-κB, Nrf2/Keap1, and PI3K/AKT/mTOR via attenuating oxidative damage, inflammatory response, and apoptosis, and regulating cellular autophagy. Therefore, this paper provides a review of the protective effect of RSV against ZEA-induced toxicity and its molecular mechanism, and discusses the safety and potential clinical applications of RSV in the search for natural mycotoxin detoxification agents.
Collapse
|
3
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Boutefaha Z, Diab KA, Gheraibia S, El-Nekeety AA, Belattar N, Hassan ME, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Screening of the phytochemical constituents of Teucrium polium extract and evaluation of their prophylactic role against the oxidative damage and cytotoxicity of Aflatoxin B 1 in rats. Toxicon 2023; 233:107252. [PMID: 37597789 DOI: 10.1016/j.toxicon.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Aflatoxin B1 (AFB1) is common carcinogen causing acute and chronic hepatocyte injuries. This study aimed to determine the bioactive components of Teucrium polium methanolic extract (TPE) and to evaluate their protective role against AFB1-induced oxidative damage, cytotoxicity, and genotoxicity in rats. Six groups of male albino rats were treated orally for 4 weeks including the control group, the ِAFB1-treated group (80 μg/kg b.w.), the groups treated with low (LD) or high (HD) dose TPE (50 or 100 mg/kg b.w.), and the groups treated with AFB1 plus TEP (LD) or TPE (HD). Blood and serum samples were collected for different assays. The GC-MS identified 34 compounds, the major compounds were pinene, germacrene D, α-cadinol, α-thujene, epi-bicyclosesquiphellandrene, and limonene. Animals that received AFB1 showed significant changes in all indicators of oxidative stress, biochemistry, cytokines, MNPCEs, comet tail formation in bone marrow, mRNA expression of inflammatory-related genes, Nrf2, and iNOS beside histological changes in the liver. TPE at the two doses tested showed insignificant changes in all tested parameters. The extract could normalize most of these parameters and the hepatic structure in AFB1-treated animals in a dose-dependent fashion. therefore, we concluded that TPE supplementation is effective for protection against AFB1 in endemic areas.
Collapse
Affiliation(s)
- Zineddine Boutefaha
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
5
|
Wu J, Li J, Wu Y, Yang M, Chen Y, Wang N, Wang J, Yuan Z, Yi J, Yang C. Betulinic acid mitigates zearalenone-induced liver injury by ERS/MAPK/Nrf2 signaling pathways in mice. Food Chem Toxicol 2023; 177:113811. [PMID: 37179046 DOI: 10.1016/j.fct.2023.113811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin commonly found in cereals and feedstuffs, which can induce oxidative stress and inflammation to cause liver damage in humans and animals. Betulinic acid (BA) is extracted from pentacyclic triterpenoids of many natural plants and has anti-inflammatory, and anti-oxidation biological activities in many studies. However, the protective effect of BA on liver injury induced by ZEA has not been reported. Therefore, this study aims to explore the protective effect of BA on ZEA-induced liver injury and its possible mechanism. In the mice experiment, ZEA exposure increased the liver index and caused histopathological impairment, oxidative damage, hepatic inflammatory responses, and increased hepatocyte apoptosis. However, when combined with BA, it could inhibit the production of ROS, up-regulate the proteins expression of Nrf2 and HO-1 and down-regulate the expression of Keap1, and alleviate oxidative damage and inflammation in the liver of mice. In addition, BA could alleviate ZEA-induced apoptosis and liver injury in mice by inhibiting the endoplasmic reticulum stress (ERS) and MAPK signaling pathways. In conclusion, this study revealed the protective effect of BA on the hepatotoxicity of ZEA for the first time, providing a new perspective for the development of ZEA antidote and the application of BA.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - You Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Mengran Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Naidong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, Changsha, 410128, China
| | - Ji Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China.
| | - Chenglin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|