1
|
Yang X, Liu H, Cheng S, Pan C, Cai Q, Chu X, Shi S, Wei W, He D, Cheng B, Wen Y, Jia Y, Tinkov AA, Skalny AV, Zhang F. Potential involvement of connective tissue growth factor in chondrocytes apoptosis of Kashin-Beck disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117148. [PMID: 39369662 DOI: 10.1016/j.ecoenv.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is an endemic osteoarthropathy characterized by excessive chondrocytes apoptosis. T-2 toxin exposure has been proved to be its etiology. Connective tissue growth factor (CTGF) exerts a profound influence on cartilage growth and metabolism. We investigated the potential role of CTGF in KBD development and examined CTGF alterations under T-2 toxin stimulation. METHODS The levels of CTGF and chondrocyte apoptosis-related markers in cartilage and primary chondrocytes from KBD and control groups were measured using qRT-PCR, Western blotting, immunohistochemistry, and immunofluorescence. We analyzed expression changes of these genes in response to T-2 toxin. Apoptosis rates of chondrocytes induced by T-2 toxin were measured by flow cytometry and TUNEL assay. The active pharmaceutical ingredient targeting CTGF was screened through Comparative Toxicogenomics Database, and molecular docking was performed using AutoDock Tools. RESULTS The CTGF levels in KBD cartilage and chondrocytes were significantly elevated and positively associated with the levels of apoptosis-related genes. T-2 toxin exposure increased CTGF and apoptosis-related gene levels in chondrocytes, with apoptosis rates rising alongside T-2 toxin concentration. Curcumin was identified as targeting CTGF and exhibited effective binding. It could down-regulate CTGF, apoptosis-related genes, such as Cleaved caspase 3 and BAX, and also significantly reduce apoptosis rate in chondrocytes treated with T-2 toxin. CONCLUSION CTGF plays a crucial role in the development of KBD. Curcumin has shown potential in inhibiting CTGF levels and reducing chondrocyte apoptosis, highlighting its promise as a therapeutic agent for preventing cartilage damage in KBD. Our findings provided valuable insights into the pathogenesis of KBD and could promote the development of novel therapeutic strategies for this debilitating disease.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Gu W, Hou L, Bao Q, Xu Q, Chen G. Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism. Animals (Basel) 2024; 14:2281. [PMID: 39123807 PMCID: PMC11311038 DOI: 10.3390/ani14152281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause tibial growth plate (TGP) chondrodysplasia in chickens, tibial damage caused by T-2 toxin in geese has not been fully demonstrated. This study aims to investigate the adverse effects of T-2 toxin on tibial bone development, bone quality, chondrocyte differentiation, and bone metabolism. Here, forty-eight one-day-old male Yangzhou goslings were randomly divided into four groups and daily gavaged with T-2 toxin at concentrations of 0, 0.5, 1.0, and 2.0 mg/kg body weight for 21 days, respectively. The development of gosling body weight and size was determined by weighing and taking body measurements after exposure to different concentrations of T-2 toxin. Changes in tibial development and bone characteristics were determined by radiographic examination, phenotypic measurements, and bone quality and composition analyses. Chondrocyte differentiation in TGP and bone metabolism was characterized by cell morphology, tissue gene-specific expression, and serum marker levels. Results showed that T-2 toxin treatment resulted in a lower weight, volume, length, middle width, and middle circumference of the tibia in a dose-dependent manner (p < 0.05). Moreover, decreased bone-breaking strength, bone mineral density, and contents of ash, Ca, and P in the tibia were observed in T-2 toxin-challenged goslings (p < 0.05). In addition, T-2 toxin not only reduced TGP height (p < 0.05) but also induced TGP chondrocytes to be disorganized with reduced numbers and indistinct borders. As expected, the apoptosis-related genes (CASP9 and CASP3) were significantly up-regulated in chondrocytes challenged by T-2 toxin with a dose dependence, while cell differentiation and maturation-related genes (BMP6, BMP7, SOX9, and RUNX2) were down-regulated (p < 0.05). Considering bone metabolism, T-2 toxin dose-dependently and significantly induced a decreased number of osteoblasts and an increased number of osteoclasts in the tibia, with inhibited patterns of osteogenesis-related genes and enzymes and increased patterns of osteoclast-related genes and enzymes (p < 0.05). Similarly, the serum Ca and P concentrations and parathyroid hormone, calcitonin, and 1, 25-dihydroxycholecalciferol levels decreased under T-2 toxin exposure (p < 0.05). In summary, 2.0 mg/kg T-2 toxin significantly inhibited tibia weight, length, width, and circumference, as well as decreased bone-breaking strength, density, and composition (ash, calcium, and phosphorus) in 21-day-old goslings compared to the control and lower dose groups. Chondrocyte differentiation in TGP was delayed by 2.0 mg/kg T-2 toxin owing to cell apoptosis. In addition, 2.0 mg/kg T-2 toxin promoted bone resorption and inhibited osteogenesis in cellular morphology, gene expression, and hormonal modulation patterns. Thus, T-2 toxin significantly inhibited tibial growth and development with a dose dependence, accompanied by decreased bone geometry parameters and properties, hindered chondrocyte differentiation, and imbalanced bone metabolism.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
| | - Lie Hou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Animal Husbandry Extension Station, Yinchuan 750001, China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Shi Y, Wang R, Li Y, Cui Y, He Y, Wang H, Liu Y, Zhang M, Chen Y, Jia M, Chen K, Ruan X, Tian J, Ma T, Chen J. Involvement of TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123114. [PMID: 38081376 DOI: 10.1016/j.envpol.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Yanan Li
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Yixin Cui
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|