1
|
Thomas KM, Wright EJ, Beach DG, McCarron P. Multi-class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography-mass spectrometry. J Chromatogr A 2024; 1738:465483. [PMID: 39547124 DOI: 10.1016/j.chroma.2024.465483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Cyanobacteria produce diverse classes of toxins including microcystins, nodularins, anatoxins, cylindrospermopsins and saxitoxins, encompassing a range of chemical properties and mechanisms of toxicity. Comprehensive analysis of these toxins in cyanobacterial, environmental and biological samples generally requires multiple methods of extraction and analysis. In this work, a method was developed for the major classes of cyanotoxins, which comprised of a three-step liquid-solid extraction method using 75 % CH3CN with 0.1 % HCOOH and a hydrophilic interaction liquid chromatography (HILIC) elution gradient that provided retention of the less polar microcystins through to the highly polar saxitoxins. Detection was performed by tandem mass spectrometry in selected reaction monitoring mode with positive and negative polarity switching. Identification criteria included matching retention times and product ion ratios with available standards. In-house validation demonstrated good performance of the method including precision ranging from 1.5 (microcystin-LA) to 5.8 (gonyautoxin-2) % RSDs, and detection limits ranging from 0.01 (cylindrospermopsin) to 0.99 (gonyautoxin-3) µg/g in freeze dried material cyanobacteria. Recovery was assessed using spiked non-toxic cyanobacterial samples (Aphanizomenon sp.) and ranged from 83 (neosaxitoxin) to 107 % ([Dha7]microcystin-LR). As a demonstration of application, toxin profiles in cyanobacterial cultures, benthic and planktonic cyanobacteria field samples, and shellfish reference materials were successfully evaluated. The procedure is also amenable for extension to other polar toxin classes including domoic acid and guanitoxin. With increasing reports of cyanobacterial blooms globally, the method represents a powerful quantitative screening tool for measuring cyanotoxins across a broad range of samples.
Collapse
Affiliation(s)
- Krista M Thomas
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada.
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
2
|
Al-Tabban A, Rhouati A, Fataftah A, Cialla-May D, Popp J, Zourob M. Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water. Toxins (Basel) 2024; 16:476. [PMID: 39591231 PMCID: PMC11598080 DOI: 10.3390/toxins16110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM). In parallel, complementary DNA (cDNA) sequences specific to each aptamer were conjugated to a fluorescence quencher BHQ1. In the absence of the target, an aptamer-cDNA duplex structure is formed, and the fluorescence is quenched. By adding the toxin, the aptamer tends to bind to its target and releases the cDNA. The fluorescence intensity is consequently restored after the formation of the complex aptamer-toxin, where the fluorescence recovery is directly correlated with the analyte concentration. Based on this principle, a highly sensitive detection of the six marine toxins was achieved, with the limits of detection of 0.15, 0.06, 0.075, 0.027, 0.041, and 0.026 nM for microcystin-LR, anatoxin-α, saxitoxin, cylindrospermopsin, okadaic acid, and brevetoxin, respectively. Moreover, each aptameric assay showed a very good selectivity towards the other five marine toxins. Finally, the developed technique was applied for the detection of the six toxins in spiked water samples with excellent recoveries.
Collapse
Affiliation(s)
- Awatef Al-Tabban
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia; (A.A.-T.); (A.R.); (A.F.)
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (D.C.-M.); (J.P.)
| | - Amina Rhouati
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia; (A.A.-T.); (A.R.); (A.F.)
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Amjad Fataftah
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia; (A.A.-T.); (A.R.); (A.F.)
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (D.C.-M.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (D.C.-M.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia; (A.A.-T.); (A.R.); (A.F.)
| |
Collapse
|
3
|
Dirks C, Cappelli P, Blomqvist M, Ekroth S, Johansson M, Persson M, Drakare S, Pekar H, Zuberovic Muratovic A. Cyanotoxin Occurrence and Diversity in 98 Cyanobacterial Blooms from Swedish Lakes and the Baltic Sea. Mar Drugs 2024; 22:199. [PMID: 38786590 PMCID: PMC11123207 DOI: 10.3390/md22050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The Drinking Water Directive (EU) 2020/2184 includes the parameter microcystin LR, a cyanotoxin, which drinking water producers need to analyze if the water source has potential for cyanobacterial blooms. In light of the increasing occurrences of cyanobacterial blooms worldwide and given that more than 50 percent of the drinking water in Sweden is produced from surface water, both fresh and brackish, the need for improved knowledge about cyanotoxin occurrence and cyanobacterial diversity has increased. In this study, a total of 98 cyanobacterial blooms were sampled in 2016-2017 and identified based on their toxin production and taxonomical compositions. The surface water samples from freshwater lakes throughout Sweden including brackish water from eight east coast locations along the Baltic Sea were analyzed for their toxin content with LC-MS/MS and taxonomic composition with 16S rRNA amplicon sequencing. Both the extracellular and the total toxin content were analyzed. Microcystin's prevalence was highest with presence in 82% of blooms, of which as a free toxin in 39% of blooms. Saxitoxins were found in 36% of blooms in which the congener decarbamoylsaxitoxin (dcSTX) was detected for the first time in Swedish surface waters at four sampling sites. Anatoxins were most rarely detected, followed by cylindrospermopsin, which were found in 6% and 10% of samples, respectively. As expected, nodularin was detected in samples collected from the Baltic Sea only. The cyanobacterial operational taxonomic units (OTUs) with the highest abundance and prevalence could be annotated to Aphanizomenon NIES-81 and the second most profuse cyanobacterial taxon to Microcystis PCC 7914. In addition, two correlations were found, one between Aphanizomenon NIES-81 and saxitoxins and another between Microcystis PCC 7914 and microcystins. This study is of value to drinking water management and scientists involved in recognizing and controlling toxic cyanobacteria blooms.
Collapse
Affiliation(s)
- Caroline Dirks
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
- Wageningen Food Safety Research, P.O. Box 230, 6700AE Wageningen, The Netherlands
| | - Paolo Cappelli
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Maria Blomqvist
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Susanne Ekroth
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Malin Johansson
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Max Persson
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Heidi Pekar
- Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
- Stockholm Vatten och Avfall, Bryggerivägen 10, SE-106 36 Stockholm, Sweden
| | | |
Collapse
|
4
|
Plata-Calzado C, Prieto AI, Cameán AM, Jos A. Analytical Methods for Anatoxin-a Determination: A Review. Toxins (Basel) 2024; 16:198. [PMID: 38668623 PMCID: PMC11053625 DOI: 10.3390/toxins16040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Anatoxin-a (ATX-a) is a potent neurotoxin produced by several species of cyanobacteria whose exposure can have direct consequences, including neurological disorders and death. The increasing prevalence of harmful cyanobacterial blooms makes the detection and reliable assessment of ATX-a levels essential to prevent the risk associated with public health. Therefore, the aim of this review is to compile the analytical methods developed to date for the detection and quantification of ATX-a levels alone and in mixtures with other cyanotoxins and their suitability. A classification of the analytical methods available is fundamental to make an appropriate choice according to the type of sample, the equipment available, and the required sensitivity and specificity for each specific purpose. The most widely used detection technique for the quantification of this toxin is liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analytical methods reviewed herein focus mainly on water and cyanobacterial samples, so the need for validated analytical methods in more complex matrices (vegetables and fish) for the determination of ATX-a to assess dietary exposure to this toxin is evidenced. There is currently a trend towards the validation of multitoxin methods as opposed to single-ATX-a determination methods, which corresponds to the real situation of cyanotoxins' confluence in nature.
Collapse
Affiliation(s)
| | - Ana I. Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain; (C.P.-C.); (A.M.C.); (A.J.)
| | | | | |
Collapse
|
5
|
Hu X, Wang Z, Ye X, Xie P, Liu Y. Analyzing MC-LR distribution characteristics in natural lakes by a novel fluorescence technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123123. [PMID: 38081380 DOI: 10.1016/j.envpol.2023.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
The death of aquatic and terrestrial organisms caused by cyanobacterial blooms has been a topic of considerable concern since the 19th century. Microcystin-LR (MC-LR) produced by cyanobacterial blooms threaten natural ecosystems and human health. Therefore, establishing an effective monitoring and early warning system to detect MC-LR in water bodies is crucial. However, rapidly and intuitively assessing the distribution traits of MC-LR in lakes is a challenging task due to the complexities and expenses associated with conventional detection methods. To overcome these technical limitations, we introduce a novel and effective method for evaluating the distribution of MC-LR in lakes. This method is achieved by using a fluorescence probe (BAD) technology, marking the first application of this technology in evaluating the distribution of MC-LR in natural lake environments. The probe BAD is endowed with unique functions through clever functionalization modification. Experimental results exhibit that BAD has different fluorescence signals at various lake sampling points. The correlation analysis of fluorescence data and physicochemical indicators determines that the fluorescence data of the probe exhibit good correlation with MC-LR, implying that BAD is capable of detecting MC-LR in lakes. Moreover, the introduction of fluorescence technology to achieve the intuitive distribution of MC-LR in the entire plateau lake. This study provides a new method for evaluating the distribution of MC-LR in plateau lakes. It opens a new avenue for exploring the relationship between cyanobacterial blooms and MC-LR in natural waters.
Collapse
Affiliation(s)
- Xiangyu Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Xiao Ye
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|