1
|
Avella I, Schulte L, Hurka S, Damm M, Eichberg J, Schiffmann S, Henke M, Timm T, Lochnit G, Hardes K, Vilcinskas A, Lüddecke T. Proteogenomics-guided functional venomics resolves the toxin arsenal and activity of Deinagkistrodon acutus venom. Int J Biol Macromol 2024; 278:135041. [PMID: 39182889 DOI: 10.1016/j.ijbiomac.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.
Collapse
Affiliation(s)
- Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Johanna Eichberg
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Günther Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Chuang PC, Chen JW, Chan YY, Tse TC, Chiang YW, Tsai TS. In vitro immunoreactivity and in vivo neutralization of Trimeresurus gracilis venom with antivenoms targeting four pit viper species. PLoS Negl Trop Dis 2024; 18:e0012070. [PMID: 38527073 PMCID: PMC10994551 DOI: 10.1371/journal.pntd.0012070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
Snakebite envenomation is a significant global health issue that requires specific antivenom treatments. In Taiwan, available antivenoms target a variety of snakes, but none specifically target Trimeresurus gracilis, an endemic and protected species found in the high mountain areas of Taiwan. This study evaluated the effectiveness of existing antivenoms against T. gracilis venom, focusing on a bivalent antivenom developed for Trimeresurus stejnegeri and Protobothrops mucrosquamatus (TsPmAV), as well as monovalent antivenoms for Deinagkistrodon acutus (DaAV) and Gloydius brevicaudus (GbAV). Our research involved in vivo toxicity testing in mice and in vitro immunobinding experiments using (chaotropic) enzyme-linked immunosorbent assays, comparing venoms from four pit viper species (T. gracilis, T. stejnegeri, P. mucrosquamatus, and D. acutus) with three types of antivenoms. These findings indicate that TsPmAV partially neutralized T. gracilis venom, marginally surpassing the efficacy of DaAV. In vitro tests revealed that GbAV displayed higher binding capacities toward T. gracilis venom than TsPmAV or DaAV. Comparisons of electrophoretic profiles also reveal that T. gracilis venom has fewer snake venom C-type lectin like proteins than D. acutus, and has more P-I snake venom metalloproteases or fewer phospholipase A2 than G. brevicaudus, T. stejnegeri, or P. mucrosquamatus. This study highlights the need for antivenoms that specifically target T. gracilis, as current treatments using TsPmAV show limited effectiveness in neutralizing local effects in patients. These findings provide crucial insights into clinical treatment protocols and contribute to the understanding of the evolutionary adaptation of snake venom, aiding in the development of more effective antivenoms for human health.
Collapse
Affiliation(s)
- Po-Chun Chuang
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Jia-Wei Chen
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Yuen-Ying Chan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tsz-Chun Tse
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biology and Anatomy, National Defense Medical Centre, Taipei, Taiwan
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
Tsai TS, Tsai IH, Qiu JL, Chan YY, Chiang YW. Comparative analysis of Deinagkistrodon acutus venom from Taiwan and China utilizing chromatographic, electrophoretic, and bioinformatic approaches, along with ELISA employing a monospecific antivenom. Toxicon 2024; 241:107663. [PMID: 38423218 DOI: 10.1016/j.toxicon.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Deinagkistrodon acutus is a medically important pitviper inhabiting mainly South China and Taiwan. The hemorrhagic effects of its envenoming are compatible to its venom, which is abundant in metalloproteases (svMPs) and C-type lectin-like proteins. In this study, we investigated geographic variations in the venom of D. acutus collected from Taiwan and four Mainland Chinese provinces: Fujian, Jiangxi, Anhui, and Hunan. The variations were assessed through high-performance liquid chromatography, non-metric multidimensional scaling analysis, gel electrophoresis, and enzyme-linked immunosorbent assay (ELISA) with a monospecific antivenom (DaMAV) generated against the Taiwanese D. acutus venom, and discussed based on venom-protein sequences in databases and literature related to D. acutus venom. Additionally, the cross-reactivity of DaMAV against Crotalus horridus and Calloselasma rhodostoma venoms was investigated. We noted differential abundances of D. acutus venom metalloproteases, C-type lectin-like proteins, and phospholipase A2, along with point mutations and selective expression of serine protease isoforms. The ELISA results revealed that the venom from Taiwan was more reactive toward Taiwanese DaMAV than the four Mainland Chinese venoms, consistent with chromatographic profile differences, whereas C. horridus venom presented moderate cross-reactivity with DaMAV. The observed immunoreactivities of these venom with DaMAV can be attributed to the high prevalence of their PIII-svMPs, which are the dominant antigens, and the conservation of PIII-svMP epitopes.
Collapse
Affiliation(s)
- Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Pingtung, 912301, Taiwan.
| | - Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Jing-Lin Qiu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Pingtung, 912301, Taiwan
| | - Yuen-Ying Chan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Pingtung, 912301, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, No. 322, Sec. 2, Shipai Rd., Taipei, 112062, Taiwan; Department of Biology and Anatomy, National Defense Medical Centre, No. 161, Sec. 6, Minquan E. Rd., Taipei, 11490, Taiwan
| |
Collapse
|