1
|
Kang JY, Choi H, Oh JM, Kim M, Lee DC. PM 2.5 Induces Pyroptosis via Activation of the ROS/NF-κB Signaling Pathway in Bronchial Epithelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1434. [PMID: 39336475 PMCID: PMC11434086 DOI: 10.3390/medicina60091434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Fine particulate matter, PM2.5, is becoming a major threat to human health, particularly in terms of respiratory diseases. Pyroptosis is a recently discovered and distinct form of cell death, characterized by pore formation in the cell membrane and secretions of proinflammatory cytokines. There has been little research on the effect of PM2.5 on pyroptosis, especially in airway epithelium. We investigated whether PM2.5-related oxidative stress induces pyroptosis in bronchial epithelial cells and defined the underlying mechanisms. Materials and Methods: After exposure of a BEAS-2B cell line to PM2.5 concentration of 20 µg/mL, reactive oxygen species (ROS) levels, parameters related to pyroptosis, and NF-κB signaling were measured by Western blotting, immunofluorescence, and ELISA (Enzyme-linked immunosorbent assay). Results: PM2.5 induced pyroptotic cell death, accompanied by LDH (Lactate dehydrogenase) release and increased uptake of propidium iodide in a dose-dependent manner. PM2.5 activated the NLRP3-casp1-gasdermin D pathway, with resulting secretions of the proinflammatory cytokines IL-1β and IL-18. The pyroptosis activated by PM2.5 was alleviated significantly by NLRP3 inhibitor. In PM2.5-exposed BEAS-2B cells, levels of intracellular ROS and NF-κB p65 increased. ROS scavenger inhibited the expression of the NLRP3 inflammasome, and the NF-κB inhibitor attenuated pyroptotic cell death triggered by PM2.5 exposure, indicating that the ROS/NF-κB pathway is involved in PM2.5-induced pyroptosis. Conclusions: These findings show that PM2.5 exposure can cause cell injury by NLRP3-inflammasome-mediated pyroptosis by upregulating the ROS/NF-κB pathway in airway epithelium.
Collapse
Affiliation(s)
- Ji-Young Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Jeju National University Hospital, 15 Aran 13-gil, Jeju-si 63241, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daeheung-dong, Jung-gu, Daejeon 34943, Republic of Korea
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daeheung-dong, Jung-gu, Daejeon 34943, Republic of Korea
| | - Minsu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| | - Dong-Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| |
Collapse
|
2
|
Wang J, Zheng Y, Gao Q, Zhou H, Chang X, Gao J, Li S. Spatial and Temporal Distribution Characteristics and Cytotoxicity of Atmospheric PM 2.5 in the Main Urban Area of Lanzhou City. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:23. [PMID: 39110236 DOI: 10.1007/s00128-024-03925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/02/2024] [Indexed: 08/25/2024]
Abstract
PM2.5, as one of the most harmful pollutant in the atmospheric environment and population health, has received much attention. We monitored PM2.5 levels at five sampling sites in the Lanzhou City and collected PM2.5 particles from two representative sites for cytotoxicity experiment. The cytotoxicity of PM2.5 samples on A549 cells and migration ability of the cells were respectively detected by Cell Counting kit-8 (CCK-8) assay and scratch assay. We detected the levels of cellular inflammatory factors and oxidative damage-related biochemical indexes. RT-qPCR was used to detect the mRNA levels of NF-κB and epithelial-mesenchymal transition (EMT)-related genes. We found that the Lanlian Hotel station had the highest PM2.5 annual average concentration. The annual average concentration change curve of PM2.5 showed a roughly "U"-shaped distribution during the whole sampling period. The cytotoxicity experiment showed the viability of A549 cells decreased and the scratch healing rate increased in the 200 and 400 μg/mL PM2.5-treated groups. We also found 400 μg/mL PM2.5 induced changes in the mRNA levels of NF-κB and EMT-related genes, the mRNA levels of IKK-α, NIK, and NF-κB in the 400 μg/mL PM2.5 group were higher than those in the control group. The mRNA levels of E-cadherin decreased and α-SMA increased in the 400 μg/mL PM2.5 groups, and the mRNA levels of Fibronectin increased in the 400 μg/mL PM2.5 groups. Moreover, we found hydroxyl radical scavenging ability and T-AOC levels were lower, and LPO levels were higher in the 200 and 400 μg/mL PM2.5 groups, and the SOD activity of cells in the 400 µg/mL PM2.5 group decreased. And compared with the control group, the levels of TNF-α were higher in the 200 and 400 μg/mL PM2.5 groups and the levels of IL-1 were higher in the 400 μg/mL PM2.5 group. The results indicated that the cytotoxicity of atmospheric PM2.5 was related to oxidative damage, inflammatory response, NF-κB activity and EMT.
Collapse
Affiliation(s)
- Jinyu Wang
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yanni Zheng
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jinxia Gao
- Lanzhou Municipal Center for Disease Control, Lanzhou, 730030, China
| | - Sheng Li
- The No.2 People's Hospital of Lanzhou, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Hou T, Zhu L, Wang Y, Peng L. Oxidative stress is the pivot for PM2.5-induced lung injury. Food Chem Toxicol 2024; 184:114362. [PMID: 38101601 DOI: 10.1016/j.fct.2023.114362] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 μm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
4
|
Yuan Q, Zhang H. Identification of differentially expressed genes and pathways in BEAS-2B cells upon long-term exposure to particulate matter (PM 2.5) from biomass combustion using bioinformatics analysis. Environ Health Prev Med 2023; 28:51. [PMID: 37722877 PMCID: PMC10519835 DOI: 10.1265/ehpm.22-00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/14/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Long-term exposure to PM2.5 from burning domestic substances has been linked to an increased risk of lung disease, but the underlying mechanisms are unclear. This study is to explore the hub genes and pathways involved in PM2.5 toxicity in human bronchial epithelial BEAS-2B cells. METHODS The GSE158954 dataset is downloaded from the GEO database. Differentially expressed genes (DEGs) were screened using the limma package in RStudio (version 4.2.1). In addition, DEGs analysis was performed by Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A protein-protein interaction (PPI) network was constructed, MCODE plug-in and the cytoHubba plug-in in Cytoscape software was used to identify the hub genes. Finally, CytoHubba and DEGs were used to integrate the hub genes, and preliminary validation was performed by comparing the toxicology genomics database (CTD). Differential immune cell infiltration was investigated using the CIBERSORT algorithm. RESULTS A total of 135 DEGs were identified, of which 57 were up-regulated and 78 were down-regulated. Functional enrichment analyses in the GO and KEGG indicated the potential involvement of DEGs was mainly enriched in the regulation of endopeptidase activity and influenza A. Gene Set Enrichment Analysis revealed that Chemical Carcinogenesis - DNA adducts were remarkably enriched in PM2.5 groups. 53 nodes and 198 edges composed the PPI network. Besides, 5 direct-acting genes were filtered at the intersection of cytohubba plug-in, MCODE plug-in and CTD database. There is a decreasing trend of dendritic cells resting after BEAS-2B cells long-term exposure to PM2.5. CONCLUSIONS The identified DEGs, modules, pathways, and hub genes provide clues and shed light on the potential molecular mechanisms of BEAS-2B cells upon long-term exposure to PM2.5.
Collapse
Affiliation(s)
- Qian Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| | - Haiqiao Zhang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, China
| |
Collapse
|
5
|
Gao J, Lei T, Wang H, Luo K, Wang Y, Cui B, Yu Z, Hu X, Zhang F, Chen Y, Ding W, Lu Z. Dimethylarginine dimethylaminohydrolase 1 protects PM 2.5 exposure-induced lung injury in mice by repressing inflammation and oxidative stress. Part Fibre Toxicol 2022; 19:64. [PMID: 36242005 PMCID: PMC9569114 DOI: 10.1186/s12989-022-00505-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airborne fine particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) pollution is associated with the prevalence of respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease. In patients with those diseases, circulating asymmetric dimethylarginine (ADMA) levels are increased, which contributes to airway nitric oxide deficiency, oxidative stress and inflammation. Overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme degrading ADMA, exerts protective effects in animal models. However, the impact of DDAH1/ADMA on PM2.5-induced lung injury has not been investigated. METHODS Ddah1-/- and DDAH1-transgenic mice, as well as their respective wild-type (WT) littermates, were exposed to either filtered air or airborne PM2.5 (mean daily concentration ~ 50 µg/m3) for 6 months through a whole-body exposure system. Mice were also acutely exposed to 10 mg/kg PM2.5 and/or exogenous ADMA (2 mg/kg) via intratracheal instillation every other day for 2 weeks. Inflammatory response, oxidative stress and related gene expressions in the lungs were examined. In addition, RAW264.7 cells were exposed to PM2.5 and/or ADMA and the changes in intracellular oxidative stress and inflammatory response were determined. RESULTS Ddah1-/- mice developed more severe lung injury than WT mice after long-term PM2.5 exposure, which was associated with greater induction of pulmonary oxidative stress and inflammation. In the lungs of PM2.5-exposed mice, Ddah1 deficiency increased protein expression of p-p65, iNOS and Bax, and decreased protein expression of Bcl-2, SOD1 and peroxiredoxin 4. Conversely, DDAH1 overexpression significantly alleviated lung injury, attenuated pulmonary oxidative stress and inflammation, and exerted opposite effects on those proteins in PM2.5-exposed mice. In addition, exogenous ADMA administration could mimic the effect of Ddah1 deficiency on PM2.5-induced lung injury, oxidative stress and inflammation. In PM2.5-exposed macrophages, ADMA aggravated the inflammatory response and oxidative stress in an iNOS-dependent manner. CONCLUSION Our data revealed that DDAH1 has a marked protective effect on long-term PM2.5 exposure-induced lung injury.
Collapse
Affiliation(s)
- Junling Gao
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Tong Lei
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Hongyun Wang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kai Luo
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yuanli Wang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Bingqing Cui
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Zhuoran Yu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xiaoqi Hu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Fang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Wenjun Ding
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang C, Wang J, Zheng X, Zhang J, Zhang J, Qiao G, Liu H, Zhao H, Bai J, Zhang H, Zhang Z. Epigenetic regulation is involved in traffic-related PM 2.5 aggravating allergic airway inflammation in rats. Clin Immunol 2021; 234:108914. [PMID: 34954131 DOI: 10.1016/j.clim.2021.108914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Increasing fine particulate matter (PM2.5) and epigenetic modifications are closely associated with the pathogenesis of asthma, but the definite mechanism remains unclear. The traffic-related PM2.5 exposure aggravated pulmonary inflammation and changed the methylation level of interferon gamma (Ifng) and interleukin (Il)4 genes, and then altered levels of affiliated cytokines of IFN-γ and IL-4 in rats with allergic airway inflammation. It also increased the level of miR146a and decreased the level of miR31. In addition, transcription factors of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 6 (Stat6) rose; forkhead box P3 (Foxp3) and signal transducer and activator of transcription 4 (Stat4) lowered. The traffic-related PM2.5 altered epigenetic modifications in allergic airway inflammation of rats leading to inflammation exacerbation through impaired regulatory T (Treg) cells function and T-helper type 1 (Th1)/Th2 cells imbalance, which provided a new target for the treatment and control of asthma.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Xin Zheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiaqi Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jingwei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoguo Qiao
- Teaching Experiment Center, School of Public Health, Shanxi Medical University, China
| | - Haifang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
7
|
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B, Li L. Effects of PM 2.5 exposure on reproductive system and its mechanisms. CHEMOSPHERE 2021; 264:128436. [PMID: 33032215 DOI: 10.1016/j.chemosphere.2020.128436] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
With the development of human society, haze has become an important form of air pollution. Haze is a mixture of fog and haze, and the main component of haze is fine particulate matter (PM2.5), which is the most important indicator of composite air pollution. Epidemiological studies proved that PM2.5 can break through the respiratory mucosal barrier and enter the human body, causing pathological effects on multiple systems of the body. In the past, people put more attention to PM2.5 in the respiratory system, cardiovascular system, nervous system, etc, and relatively paid less attention to the reproductive system. Recent studies have shown that PM2.5 will accumulate in the reproductive organs through blood-testis barrier, placental barrier, epithelial barrier and other barriers protecting reproductive tissues. In addition, PM2.5 can disrupt hormone levels, ultimately affecting fertility. Prior studies have shown that oxidative stress, inflammation, apoptosis, and the breakdown of barrier structures are now considered to contribute to reproductive toxicity and may cause damage at the molecular and genetic levels. However, the exact mechanism remains to be elucidated. Our review aims to provide an understanding of the pathological effects of PM2.5 on reproductive system and the existing injury mechanism.
Collapse
Affiliation(s)
- Lingjuan Wang
- Tianjin Medical University General Hospital, Tianjin, 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Luo
- Department of Cardiovascular Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730000, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China.
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| |
Collapse
|
8
|
Han X, Zhuang Y. PM2.5 induces autophagy-mediated cell apoptosis via PI3K/AKT/mTOR signaling pathway in mice bronchial epithelium cells. Exp Ther Med 2020; 21:1. [PMID: 33235610 PMCID: PMC7678636 DOI: 10.3892/etm.2020.9433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Air pollution can highly impact the respiratory system in healthy individuals. Studies have indicated that particles with an aerodynamic diameter of ≤2.5 µm (PM2.5) can be considered to be harmful for lung alveoli and bronchial epithelium cells. PM2.5 can be directly inhaled and can deeply penetrate into the lung alveoli, causing lung dysfunction. However, the toxicological mechanism mediated by PM2.5 for respiratory disease has still not been clearly determined. The purpose of the current study was to investigate the effects of PM2.5 on mouse bronchial epithelium cells (MBECs) and explored the possible mechanism mediated by PM2.5 in MBECs. The results of the current study indicated that PM2.5 markedly decreased lung function, including total lung capacity, residual volume, vital capacity and airway resistance in experimental mice. The results demonstrated that PM2.5 markedly induced inflammatory responses, oxidative injury and MBEC apoptosis. PM2.5 increased interleukin (IL)-1β and IL-6 expression, and reactive oxygen species production in MBECs. Furthermore, PM2.5 specifically induced PI3K, AKT and mTOR expression in MBECs. Disruption of PI3K/AKT/mTOR signaling was also indicated to effectively inhibit apoptosis of MBECs. In conclusion, the results of the current study systematically demonstrated the role of apoptosis-mediated MBEC apoptosis in PM2.5-treated mice, and provides a potential strategy for preclinical intervention in patients with PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Xuemei Han
- Respiratory Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yan Zhuang
- Respiratory Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
9
|
Somayajulu M, Ekanayaka S, McClellan SA, Bessert D, Pitchaikannu A, Zhang K, Hazlett LD. Airborne Particulates Affect Corneal Homeostasis and Immunity. Invest Ophthalmol Vis Sci 2020; 61:23. [PMID: 32301974 PMCID: PMC7401652 DOI: 10.1167/iovs.61.4.23] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To determine the effects of airborne particulate matter (PM) <2.5 µm in vitro and on the normal and Pseudomonas aeruginosa (PA)-infected cornea. Methods An MTT viability assay tested the effects of PM2.5 on mouse corneal epithelial cells (MCEC) and human corneal epithelial cells (HCET). MCEC were tested for reactive oxygen species using a 2′,7′-dichlorodihydrofluorescein assay; RT-PCR determined mRNA levels of inflammatory and oxidative stress markers in MCEC (HMGB1, toll-like receptor 2, IL-1β, CXCL2, GPX1, GPX2, GR1, superoxide dismutase 2, and heme oxygenase 1) and HCET (high mobility group box 1, CXCL2, and IL-1β). C57BL/6 mice also were infected and after 6 hours, the PM2.5 was topically applied. Disease was graded by clinical score and evaluated by histology, plate count, myeloperoxidase assay, RT-PCR, ELISA, and Western blot. Results After PM2.5 (25–200 µg/mL), 80% to 90% of MCEC and HCET were viable and PM exposure increased reactive oxygen species in MCEC and mRNA expression levels for inflammatory and oxidative stress markers in mouse and human cells. In vivo, the cornea of PA+PM2.5 exposed mice exhibited earlier perforation over PA alone (confirmed histologically). In cornea, plate counts were increased after PA+PM2.5, whereas myeloperoxidase activity was significantly increased after PA+PM2.5 over other groups. The mRNA levels for several proinflammatory and oxidative stress markers were increased in the cornea in the PA+PM2.5 over other groups; protein levels were elevated for high mobility group box 1, but not toll-like receptor 4 or glutathione reductase 1. Uninfected corneas treated with PM2.5 did not differ from normal. Conclusions PM2.5 triggers reactive oxygen species, upregulates mRNA levels of oxidative stress, inflammatory markers, and high mobility group box 1 protein, contributing to perforation in PA-infected corneas.
Collapse
|
10
|
Liu Y, Zhang B, Zhang T, Wang H, Peng L, Zhou L. Effect of NF-κB signal pathway on mucus secretion induced by atmospheric PM 2.5 in asthmatic rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110094. [PMID: 31869718 DOI: 10.1016/j.ecoenv.2019.110094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to PM2.5 can stimulate the mucus secretion of airway, affecting the development of bronchial asthma. NF-κB signal pathway plays an important role in inflammation and dysimmunity, what may contribute to the mucus secretion. The present study was undertaken to explore the effect of NF-κB signal pathway on mucus secretion induced by PM2.5 in rats with bronchial asthma. METHODS Fifty rats (25 males and 25 females) were divided randomly into the control group, ovalbumin asthmatic model group, asthma low-, middle- and high-dose groups (n = 10, 5 males and 5 females each group). The control group, ovalbumin asthmatic model group received physiological saline; the asthma low-, middle- and high-dose groups received 1.5, 7.5 and 37.5 mg/kg PM2.5 on saline, which instilled into the trachea at 2-day intervals for two doses. Lung histopathology was observed by HE staining. The mRNA levels of NF-κB family gens were detected with real time PCR. IκB-α protein expression levels were detected with Western blot. IL-1β, TNF-α and Muc5ac levels were detected by ELISA. RESULTS Respiratory mucus secretion increased with increasing dose of PM2.5. Compared with healthy rats, the protein expression levels of IκB-α were significantly lower in the lung of asthmatic rats (p < 0.05), while the relative mRNA expression levels of NF-κB family genes in tracheal tissue and in lung were significantly higher in the asthmatic rats (p < 0.05). Serum IL-1β levels were significantly higher in the high-dose group than in the control group. Muc5ac protein levels in the trachea were higher in the high-dose compared with the low-and middle-dose groups. CONCLUSION Short-term exposure to a high concentration of PM2.5 could up-regulate the mRNA expression levels of NF-κB family genes, activate the NF-κB signal pathway, stimulate more IL-1β and mucus secretion in rats with bronchial asthma. NF-κB signal pathway may regulate the level of IL-1β, which could influence the mucus secretion induced by PM2.5 in asthmatic rats.
Collapse
Affiliation(s)
- Ying Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Tianrong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Haodong Wang
- Department of Vascular Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Liting Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China; Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Zu YY, Liu QF, Tian SX, Jin LX, Jiang FS, Li MY, Zhu BQ, Ding ZS. Effective fraction of Bletilla striata reduces the inflammatory cytokine production induced by water and organic extracts of airborne fine particulate matter (PM 2.5) in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:369. [PMID: 31842843 PMCID: PMC6916096 DOI: 10.1186/s12906-019-2790-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/08/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Bletilla striata is a traditional Chinese medicine used to treat hemorrhage, scald, gastric ulcer, pulmonary diseases and inflammations. In this study, we investigated bioactivity of the effective fraction of B. striata (EFB) in reducing the inflammatory cytokine production induced by water or organic extracts of PM2.5. METHODS PM2.5 extracts were collected and analyzed by chromatographic system and inductively coupled plasma mass spectrometer. Cell viability was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, and cell supernatant was analyzed by flow cytometry, ELISA, and qRT-PCR in cultured mouse macrophage cell line RAW264.7 treated with EFB and PM2.5 extracts. Expressions of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were measured by Western blot. RESULTS PM2.5 composition is complex and the toxicity of PM2.5 extracts were not noticeable. The treatment of EFB at a wide dose-range of 0-40 μg/mL did not cause significant change of RAW264.7 cell proliferation. EFB pretreatment decreased the inflammatory cytokines in the macrophage. Further analysis showed that EFB significantly attenuated PM2.5-induced proinflammatory protein expression and downregulated the levels of phosphorylated NF-κBp65, inhibitor of kappa B (IκB)-α, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. CONCLUSIONS Our study demonstrated the potential effectiveness of B. striata extracts for treating PM2.5-triggered pulmonary inflammation.
Collapse
Affiliation(s)
- Yu-Yao Zu
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Quan-Fang Liu
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Shu-Xin Tian
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Li-Xia Jin
- College of Medical Technology, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Fu-Sheng Jiang
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Mei-Ya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China.
| |
Collapse
|
12
|
Niu X, Ho KF, Hu T, Sun J, Duan J, Huang Y, Lui KH, Cao J. Characterization of chemical components and cytotoxicity effects of indoor and outdoor fine particulate matter (PM 2.5) in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31913-31923. [PMID: 31489544 DOI: 10.1007/s11356-019-06323-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The chemical and cytotoxicity properties of fine particulate matter (PM2.5) at indoor and outdoor environment were characterized in Xi'an, China. The mass concentrations of PM2.5 in urban areas (93.29~96.13 μg m-3 for indoor and 124.37~154.52 μg m-3 for outdoor) were higher than suburban (68.40 μg m-3 for indoor and 96.18 μg m-3 for outdoor). The PM2.5 concentrations from outdoor environment due to fossil fuel combustion were higher than indoor environment. An indoor environment without central heating demonstrated higher organic carbon-to-elemental carbon (OC / EC) ratios and n-alkanes values that potentially attributed to residential coal combustion activities. The cell viability of human epithelial lung cells showed dose-dependent decrease, while nitric oxide (NO) and oxidative potential showed dose-dependent increase under exposure to PM2.5. The variations of bioreactivities could be possibly related to different chemical components from different sources. Moderate (0.4 < R < 0.6) to strong (R > 0.6) correlations were observed between bioreactivities and elemental carbon (EC)/secondary aerosols (NO3-, SO42-, and NH4+)/heavy metals (Ni, Cu, and Pb). The findings suggest PM2.5 is associated with particle induced oxidative potential, which are further responsible for respiratory diseases under chronic exposure.
Collapse
Affiliation(s)
- Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tafeng Hu
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Jian Sun
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jing Duan
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Ka Hei Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| |
Collapse
|
13
|
Popova TN, Safonova OA, Stolyarova AO, Verevkin AN. [The effect of the biologically active additive epiphamine on antioxidant and NADPH-generating enzymes activity under experimental cerebral ischemia/reperfusion in rats]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:31-37. [PMID: 29460832 DOI: 10.18097/pbmc20186401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of biologically active additive with immunomodulator properties epiphamine on the activity of antioxidant (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase) and NADPH-generating (glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) enzymes has been investigated at experimental cerebral ischemia/reperfusion in rats. The results obtained indicate epiphamine-induced changes of these enzymes activities towards control values. Changes in the content of lactate, a marker of the pathology development, have also been found in experimental animals under ischemia and epiphamine administration caused changes similar to those observed in the case of enzyme activities studied. In most cases, the changes were dose-dependent. Thus, epiphamine can be of considerable interest from the point of view of metabolic changes pharmacological correction at the development of the pathology accompanied by oxidative stress.
Collapse
Affiliation(s)
- T N Popova
- Voronezh State University, Voronezh, Russia
| | | | | | | |
Collapse
|
14
|
Chen S, Chen M, Wei W, Qiu L, Zhang L, Cao Q, Ying Z. Glucose Homeostasis following Diesel Exhaust Particulate Matter Exposure in a Lung Epithelial Cell-Specific IKK2-Deficient Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57009. [PMID: 31095431 PMCID: PMC6791567 DOI: 10.1289/ehp4591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pulmonary inflammation is believed to be central to the pathogenesis due to exposure to fine particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text]). This central role, however, has not yet been systemically examined. OBJECTIVE In the present study, we exploited a lung epithelial cell-specific inhibitor [Formula: see text] kinase 2 (IKK2) knockout mouse model to determine the role of pulmonary inflammation in the pathophysiology due to exposure to diesel exhaust particulate matter (DEP). METHODS [Formula: see text] (lung epithelial cell-specific IKK2 knockout, KO) and [Formula: see text] (wild-type, tgWT) mice were intratracheally instilled with either vehicle or DEP for 4 months, and their inflammatory response and glucose homeostasis were then assessed. RESULTS In comparison with tgWT mice, lung epithelial cell-specific IKK2-deficient mice had fewer DEP exposure-induced bronchoalveolar lavage fluid immune cells and proinflammatory cytokines as well as fewer DEP exposure-induced circulating proinflammatory cytokines. Glucose and insulin tolerance tests revealed that lung epithelial cell-specific IKK2 deficiency resulted in markedly less DEP exposure-induced insulin resistance and greater glucose tolerance. Akt phosphorylation analyses of insulin-responsive tissues showed that DEP exposure primarily targeted hepatic insulin sensitivity. Lung epithelial cell-specific IKK2-deficient mice had significantly lower hepatic insulin resistance than tgWT mice had. Furthermore, this difference in insulin resistance was accompanied by consistent differences in hepatic insulin receptor substrate 1 serine phosphorylation and inflammatory marker expression. DISCUSSION Our findings suggest that in a tissue-specific knockout mouse model, an IKK2-dependent pulmonary inflammatory response was essential for the development of abnormal glucose homeostasis due to exposure to DEP. https://doi.org/10.1289/EHP4591.
Collapse
Affiliation(s)
- Sufang Chen
- Department of Geriatric Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Wei
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Bile Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong, China
| | - Li Zhang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Wang J, Zhang WJ, Xiong W, Lu WH, Zheng HY, Zhou X, Yuan J. PM 2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF- κB pathway. Hum Exp Toxicol 2018; 38:311-320. [PMID: 30354488 DOI: 10.1177/0960327118802628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies indicated that exposure to fine particulate matter (PM2.5) was related to pulmonary inflammatory diseases through activation of nuclear factor kappa B (NF-κB) signaling pathway to trigger cytokine secretions in human lung carcinoma cells. To investigate the potential mechanisms underlying expression of cytokines via activated NF-κB by PM2.5, human bronchial epithelial cells (BEAS-2B cells) were treated with PM2.5 extracts at different concentrations (6, 13, 25, 50, 100, 200, and 400 µg mL-1) for 6 and 24 h. We found that 100 µg mL-1 PM2.5 increased interleukin 6 (IL-6) and IL-8 expression at 24 h (p < 0.05 or p < 0.01). Moreover, 100 µg mL-1 PM2.5 upregulated phosphorylated IκB kinase (IKK), p65, and IκBα at 6 h, which could be reversed by the IKK inhibitor Bay11-7082 (p < 0.05 or p < 0.01). The p65 subunit of NF-κB was translocated into the nucleus of the cells treated with 100 µg mL-1 PM2.5 at 6 and 24 h. Bay11-7082 partly inhibited PM2.5-induced increases of IL-6 and IL-8 secretion. The results indicated that PM2.5 extract increased IL-6 and IL-8 levels in BEAS-2B cells through activation of IKK/NF-κB pathway. Our study will contribute to better understanding of the mechanism of PM2.5-induced pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- J Wang
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W J Zhang
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W Xiong
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - W H Lu
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - H Y Zheng
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - X Zhou
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Both authors have contributed equally to this work
| | - J Yuan
- 1 Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,2 The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Both authors have contributed equally to this work
| |
Collapse
|
16
|
Chen M, Zhou H, Xu Y, Qiu L, Hu Z, Qin X, Chen S, Zhang Y, Cao Q, Abu-Amer Y, Ying Z. From the Cover: Lung-Specific Overexpression of Constitutively Active IKK2 Induces Pulmonary and Systemic Inflammations but Not Hypothalamic Inflammation and Glucose Intolerance. Toxicol Sci 2018; 160:4-14. [PMID: 29036520 DOI: 10.1093/toxsci/kfx154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lung is constantly exposed to ambient pollutants such as ambient fine particulate matter (PM2.5), making it one of the most frequent locations of inflammation in the body. Given the establishment of crucial role of inflammation in the pathogenesis of cardiometabolic diseases, pulmonary inflammation is thus widely believed to be an important risk factor for cardiometabolic diseases. However, the causality between them has not yet been well established. To determine if pulmonary inflammation is sufficient to cause adverse cardiometabolic effects, SFTPC-rtTA+/-tetO-cre+/-pROSA-inhibitor κB kinase 2(IKK2)ca+/- (LungIKK2ca) and littermate SFTPC-rtTA+/-tetO-cre-/-pROSA-IKK2ca+/- wildtype (WT) mice were fed with doxycycline diet to induce constitutively active Ikk2 (Ikk2ca) overexpression in the lung and their pulmonary, systemic, adipose, and hypothalamic inflammations, vascular function, and glucose homeostasis were assessed. Feeding with doxycycline diet resulted in IKK2ca overexpression in the lungs of LungIKK2ca but not WT mice. This induction of IKK2ca was accompanied by marked pulmonary inflammation as evidenced by significant increases in bronchoalveolar lavage fluid leukocytes, pulmonary macrophage infiltration, and pulmonary mRNA expression of tumor necrosis factor α (Tnfα) and interleukin-6 (Il-6). This pulmonary inflammation due to lung-specific overexpression of IKK2ca was sufficient to increase circulating TNFα and IL-6 levels, adipose expression of Tnfα and Il-6 mRNA, aortic endothelial dysfunction, and systemic insulin resistance. Unexpectedly, no significant alteration in hypothalamic expression of Tnfα and Il-6 mRNA and glucose intolerance were observed in these mice. Pulmonary inflammation is sufficient to induce systemic inflammation, endothelial dysfunction, and insulin resistance, but not hypothalamic inflammation and glucose intolerance.
Collapse
Affiliation(s)
- Minjie Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huifen Zhou
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Pathology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lianglin Qiu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziying Hu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Xiaobo Qin
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sufang Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yousef Abu-Amer
- Orthopedics and Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri63110
| | - Zhekang Ying
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Pu XJ, Li J, Zhou QL, Pan W, Li YQ, Zhang Y, Wang J, Jiao Z. Rosiglitazone inhibits PM2.5-induced cytotoxicity in human lung epithelial A549 cells. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:152. [PMID: 29862241 DOI: 10.21037/atm.2018.04.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Exposure to fine particulate matter <2.5 µm in diameter (PM2.5) leads to global adverse health effects, including increases in morbidity and mortality of respiratory diseases. PM2.5 increases production of reactive oxygen species (ROS) in the lung, which further lead to oxidative stress, cell apoptosis and cell death. According to results of previous studies, oxidative stress and subsequent cell apoptosis can be reduced by peroxisome proliferator-activated receptor gamma (PPARγ) in various cell types, however, its role in oxidative stress-related cell apoptosis caused by PM2.5 in respiratory systems is unclear. Methods Human lung alveolar epithelial A549 cells were exposed to PM2.5 with or without rosiglitazone (an agonist of PPARγ) treatment. Cellular apoptosis and intracellular oxidative stress were determined by flow cytometry based on FITC Annexin V and DCFH-DA fluorescence, respectively. Western blot was conducted to determine the expression of Bax, Bcl2, PPARγ, P-ERK1/2, ERK1/2, P-STAT3, and STAT3. Results PPARγ was downregulated in PM2.5-treated A549 cells, and application of rosiglitazone reduced PM2.5-mediated ROS generation and cell apoptosis. In addition, our results indicated that rosiglitazone treatment suppressed PM2.5-induced ERK1/2 and STAT3 activation. Conclusions Collectively, these data suggested that rosiglitazone protects against PM2.5-induced ROS production and cell apoptosis and represses activation of ERK1/2 and STAT3 signaling in A549 cells. Our results indicated that rosiglitazone is a potential therapeutic agent for PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Xian-Juan Pu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China
| | - Jin Li
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiu-Lian Zhou
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yong-Qin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinhua Wang
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
18
|
Li J, Zhou Q, Yang T, Li Y, Zhang Y, Wang J, Jiao Z. SGK1 inhibits PM2.5-induced apoptosis and oxidative stress in human lung alveolar epithelial A549 cells. Biochem Biophys Res Commun 2018; 496:1291-1295. [PMID: 29412164 DOI: 10.1016/j.bbrc.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Emerging evidence demonstrated that particulate matter 2.5 (PM2.5) is an important environmental risk factor for lung diseases. Serum- and glucocorticoid-inducible kinase 1(SGK1) was reported to be a crucial factor for cell survival. However, the role of SGK1 in PM2.5-induced cell injury is still unclear. In this work, we firstly found that the expression of SGK1 was decreased in PM2.5-treated human lung alveolar epithelial (A549) cells by western blot. In addition, overexpression of SGK1 significantly attenuated A549 cell apoptosis and reduced the reactive oxygen species (ROS) generation induced by PM2.5. Moreover, we found that PM2.5 exposure significantly promoted the ERK1/2 activation and inhibited the AKT activation, whereas overexpression of SGK1 could reverse that. Finally, the results of the rescue experiment showed that MK2206 (AKT inhibitor) could rescue the impact of SGK1 on A549 cell apoptosis, while PD98059 (ERK1/2 inhibitor) could not further aggravate the impact. Taken together, our results suggest that SGK1 inhibits PM2.5-induced cell apoptosis and ROS generation via ERK1/2 and AKT signaling pathway in human lung alveolar epithelial A549 cells.
Collapse
Affiliation(s)
- Jin Li
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Qiulian Zhou
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yongqin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
19
|
Zhang Y, Wang S, Zhu J, Li C, Zhang T, Liu H, Xu Q, Ye X, Zhou L, Ye L. Effect of Atmospheric PM2.5 on Expression Levels of NF-κB Genes and Inflammatory Cytokines Regulated by NF-κB in Human Macrophage. Inflammation 2018; 41:784-794. [DOI: 10.1007/s10753-018-0732-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Peng H, Zhao XH, Bi TT, Yuan XY, Guo JB, Peng SQ. PM 2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B. Mil Med Res 2017; 4:27. [PMID: 29502513 PMCID: PMC5577776 DOI: 10.1186/s40779-017-0136-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/08/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Particulate matter (PM), which has adverse effects on citizen health, is a major air pollutant in Beijing city. PM2.5 is an indicator of PM in urban areas and can cause serious damage to human health. Many epidemiological studies have shown that nuclear factor-kappa B (NF-κB) is involved in PM2.5-induced cell injury, but the exact mechanisms are not well understood. METHODS The cytotoxic effects of PM2.5 at 25-1600 μg/ml for 24 h were determined by MTT assay in Chinese hamster ovary cells (CHO) cells. Flow cytometry was used to determine the apoptosis rate induced by PM2.5. The destabilized enhanced green fluorescent protein (d2EGFP) green fluorescent protein reporter system was used to determine the NF-κB activity induced by PM2.5. The expression of pro-apoptotic Bcl-2-associated death promoter (BAD) proteins induced by PM2.5 was determined by western blotting to explore the relationship between PM2.5 and the NF-κB signaling pathway and to determine the toxicological mechanisms of PM2.5. RESULTS PM2.5 collected in Beijing urban districts induces cytotoxic effects in CHO cells according to MTT assay with 72.28% cell viability rates even at 200 μg/ml PM2.5 and flow cytometry assays with 26.97% apoptosis rates at 200 μg/ml PM2.5. PM2.5 increases the activation levels of NF-κB, which have maintained for 24 h. 200 μg/ml PM2.5 cause activation of NF-κB after exposure for 4 h, the activation peak appears after 13.5 h with a peak value of 25.41%. The average percentage of NF-κB activation in whole 24 h is up to 12.9% by 200 μg/ml PM2.5. In addition, PM2.5 decreases the expression level of the pro-apoptotic protein BAD in a concentration-dependent manner. CONCLUSIONS PM2.5 induces NF-κB activation, which persists for 24 h. The expression of pro-apoptotic protein BAD decreased with increased concentrations of PM2.5. These findings suggest that PM2.5 plays a major role in apoptosis by activating the NF-κB signaling pathway and reducing BAD protein expression.
Collapse
Affiliation(s)
- Hui Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiao-Hong Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
| | - Ting-Ting Bi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Xiao-Yan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jia-Bin Guo
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
21
|
Zhang Y, Zheng L, Tuo J, Liu Q, Zhang X, Xu Z, Liu S, Sui G. Analysis of PM 2.5-induced cytotoxicity in human HaCaT cells based on a microfluidic system. Toxicol In Vitro 2017; 43:1-8. [PMID: 28431925 DOI: 10.1016/j.tiv.2017.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 02/11/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Human exposure to PM2.5 causes several adverse health effects. Skin is the first barrier against harmful environmental substances and can directly contact with PM2.5, but there is no study about PM2.5-induced cytotoxicity in human skin cells on the molecular level partially due to the shortcomings of traditional research methods. In present study, we established a microfluidic system including a cell culture chip integrated with a high-throughput protein microarray chip to investigate the mechanism of PM2.5-mediated cytotoxicity in human HaCaT cells. We found that PM2.5 was lodged inside the cytoplasm, mitochondria and nucleus of HaCaT cells by TEM. Flow cytometry analysis indicated that the cell apoptosis rate increased from 0.49% to 53.4%. The results of protein microarray showed that NF-κB and NALP3 signal transductions were activated in HaCaT cells after PM2.5 stimulations, up-regulating the expression of IL-1β and IL-6, which resulted in inflammatory response in HaCaT cells. Our findings provide a molecular insight into PM2.5-induced skin injury.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Lulu Zheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jiang Tuo
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Zhixuan Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
22
|
Song L, Li D, Li X, Ma L, Bai X, Wen Z, Zhang X, Chen D, Peng L. Exposure to PM2.5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:192-199. [PMID: 28192748 DOI: 10.1016/j.etap.2017.02.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 05/20/2023]
Abstract
Exposure to particulate matter (PM) with an aerodynamic diameter≤2.5μm (PM2.5) induces reactive oxygen species (ROS) and pro-inflammatory cytokine production, leading to airway epithelial injury. However, the mechanisms underlying the toxicity of PM2.5 have not been clarified. Here, we show that exposure to PM2.5 induces sustained activation of the nuclear factor kappa B (NF-κB) signaling in human airway epithelial Beas-2B (B2B) cells. In addition, PM2.5 exposure significantly decreased miR-331 expression in B2B cells, which was abrogated by inhibition of ROS or phosphoinositide 3-kinase (PI3K)/Akt pathway. Induction of miR-331 overexpression attenuated the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Furthermore, miR-331 targeted the inhibitor of NF-κB kinase beta (IKK-β) by down-regulating the IKK-β-regulated luciferase activity in HEK293 cells. Moreover, induction of miR-331 over-expression inhibited IKK-β expression while induction of IKK-β over-expression prevented the inhibition of miR-331 on the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Therefore, PM2.5 exposure decreased miR-331 expression via the ROS/PI3K/Akt pathway, resulting in an increase in the IKK-β expression and sustained NF-κB activation in human airway epithelial cells. Our findings may provide new insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure and aid in design of new therapeutic strategies to prevent PM2.5-induced toxicity.
Collapse
Affiliation(s)
- Lei Song
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Xiaoping Li
- Department of Pediatrics, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Lianjun Ma
- Endoscopy Center, the China-Japan Hospital of Jilin University, 146 Xiantai Street, Changchun, China
| | - Xiaoxue Bai
- Cadre's Ward, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Xiufang Zhang
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Dong Chen
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Liping Peng
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China,.
| |
Collapse
|
23
|
Bai Y, Sun Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights. Biochim Biophys Acta Gen Subj 2016; 1860:2863-8. [DOI: 10.1016/j.bbagen.2016.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
|
24
|
Yan Z, Wang J, Li J, Jiang N, Zhang R, Yang W, Yao W, Wu W. Oxidative stress and endocytosis are involved in upregulation of interleukin-8 expression in airway cells exposed to PM2.5. ENVIRONMENTAL TOXICOLOGY 2016; 31:1869-1878. [PMID: 26303504 DOI: 10.1002/tox.22188] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Inhaled PM2.5 (particulate matter with an aerodynamic diameter of 2.5 μm or less) can induce lung inflammation through released inflammatory mediators from airway cells, such as interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α). However, the mechanisms underlying PM2.5-induced IL-8 gene expression have not been fully characterized. BEAS-2B cells (a human bronchial epithelial cell line) and THP-1 cells (a human macrophage-like cell line) were used as the in vitro models to investigate the underlying mechanism in this study. IL-8 expression was increased in the cells treated with PM2.5 in a dose-dependent manner. The water-soluble and insoluble fractions of PM2.5 suspension were both shown to induce IL-8 expression. PM2.5 exposure could obviously induce ROS (reactive oxygen species) generation, indicative of oxidative stress. Pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) potently inhibited PM2.5-induced IL-8 expression. Employment of the transition metal chelators including TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) or DFO (desferrioxamine) inhibited IL-8 expression induced by PM2.5 by over 20% in BEAS-2B cells, but had minimal effect in THP-1 cells. Pretreatment with the endocytosis inhibitor CytD markedly blocked IL-8 expression induced by PM2.5 in both BEAS-2B and THP-1 cells. In summary, exposure to PM2.5 induced IL-8 gene expression through oxidative stress induction and endocytosis in airway cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1869-1878, 2016.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jia Wang
- Department of Chemistry, Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Juan Li
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Nan Jiang
- Department of Chemistry, Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiqin Zhang
- Department of Chemistry, Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Weichao Yang
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
25
|
DDAH1 plays dual roles in PM2.5 induced cell death in A549 cells. Biochim Biophys Acta Gen Subj 2016; 1860:2793-801. [DOI: 10.1016/j.bbagen.2016.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
|
26
|
Xu MX, Zhu YF, Chang HF, Liang Y. Nanoceria restrains PM2.5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Free Radic Biol Med 2016; 99:259-272. [PMID: 27554971 DOI: 10.1016/j.freeradbiomed.2016.08.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 01/09/2023]
Abstract
Increasing studies demonstrated that air pollution (PM2.5) plays a significant role in metabolic and neurological diseases. Unfortunately, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. In this regard, we investigated the role of NF-κB and Nrf2 signaling in PM2.5-induced metabolic disorders and neuroinflammation, and further confirmed whether Nrf2 deficiency promoted PM2.5-induced inflammatory response by up regulating astrocytes activation and nerve injury via modulating NF-κB signaling pathways. Present results found that, indeed, PM2.5 challenges results in glucose tolerance, insulin resistance, dysarteriotony, peripheral inflammation, nerve injury and hypothalamus oxidative stress through astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Moreover, in vitro study, we confirmed that activated astrocytes induced by PM2.5 were involved in pathogenesis of hypothalamic inflammation, which were significantly associated with NF-κB signaling. Nanoceria as potential anti-inflammatory and anti-oxidant stress biomaterial has gained increasing attention. Moderate nanoceria treatment is able to restrain PM2.5-induced metabolic syndrome and inflammation. Inhibition of astrocytes activation related NF-κB and enhancement of Nrf2 by cerium oxide were observed in vivo and in vitro, suggesting cerium oxide inhibited hypothalamic inflammation and nerve injury by altering hypothalamic neuroendocrine alterations and decreasing glial cells activation. In addition, NF-κB inhibitor pyrollidine dithiocarbamate (PDTC) treated primary astrocytes directly determined Nrf2 pathway could be up regulated by dose-dependent nanoceria. These results suggest a new therapeutic approach or target to protect against air pollution related diseases by cerium oxide treatment.
Collapse
Affiliation(s)
- Min-Xuan Xu
- Fenchem Ingredient Technology Company & Nanjing University, Nanjing 210023, PR China
| | - Yan-Fang Zhu
- Fenchem Ingredient Technology Company & Nanjing University, Nanjing 210023, PR China
| | - Hsiao-Feng Chang
- Fenchem Ingredient Technology Company & Nanjing University, Nanjing 210023, PR China
| | - Ying Liang
- Research Institute of Leisure Industry, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
27
|
Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:67-74. [PMID: 26896893 DOI: 10.1016/j.ecoenv.2016.01.030] [Citation(s) in RCA: 575] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The impacts of ambient PM2.5 on public health have become great concerns worldwide, especially in the developing countries. Epidemiological and toxicological studies have shown that PM2.5 does not only induce cardiopulmonary disorders and/or impairments, but also contributes to a variety of other adverse health effects, such as driving the initiation and progression of diabetes mellitus and eliciting adverse birth outcomes. Of note, recent findings have demonstrated that PM2.5 may still pose a hazard to public health even at very low levels (far below national standards) of exposure. The proposed underlying mechanisms whereby PM2.5 causes adverse effects to public health include inducing intracellular oxidative stress, mutagenicity/genotoxicity and inflammatory responses. The present review aims to provide an brief overview of new insights into the molecular mechanisms linking ambient PM2.5 exposure and health effects, which were explored with new technologies in recent years.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Dan Gao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Fen Liao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Furong Zhou
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Xinming Wang
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
28
|
Jin XT, Chen ML, Li RJ, An Q, Song L, Zhao Y, Xiao H, Cheng L, Li ZY. Progression and inflammation of human myeloid leukemia induced by ambient PM2.5 exposure. Arch Toxicol 2015; 90:1929-38. [PMID: 26486797 DOI: 10.1007/s00204-015-1610-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 01/29/2023]
Abstract
PM2.5 (aerodynamic diameter ≤2.5 μm) has been a dominating and ubiquitous air pollutant and has become a global concern. Emerging evidences suggest a positive correlation between PM2.5 and leukemia, but the underlying molecular mechanisms remain unclear and need to be elucidated. Here, we assessed the impacts of PM2.5 on the progression and inflammation of human myeloid leukemia at lower environmental doses and explored the possible pathway. We showed that PM2.5 exposure significantly induced the leukemia cell growth and enhanced the release of inflammatory mediators in both in vitro and in vivo models. Additionally, NF-κB p65 and p-STAT3 were activated in PM2.5-treated leukemia cells, with a concomitant increase in both ROS formation and NADPH oxidase expressions. Strikingly, the supplement of inhibitors, including NAC (ROS), PDTC (NF-κB), or WP1066 (STAT3), contributed to a decline in leukemia cell growth. Furthermore, enhanced expressions of inflammatory cytokines were attenuated by the addition of NAC or PDTC, but not affected by WP1066. This study demonstrates that PM2.5 promotes leukemia progression, identifies a potential intervention target, and provides further understanding of the detrimental effect of PM2.5 exposure on human health.
Collapse
Affiliation(s)
- Xiao-Ting Jin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Mei-Lan Chen
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Rui-Jin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Quan An
- China Institute for Radiation Protection, Taiyuan, China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Yi Zhao
- Biology Institute of Shanxi, Taiyuan, China
| | - Hong Xiao
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Long Cheng
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhuo-Yu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
29
|
van Berlo D, Hullmann M, Schins RPF. Toxicology of ambient particulate matter. ACTA ACUST UNITED AC 2015; 101:165-217. [PMID: 22945570 DOI: 10.1007/978-3-7643-8340-4_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that inhalation exposure to particulate matter (PM) can lead to or exacerbate various diseases, which are not limited to the lung but extend to the cardiovascular system and possibly other organs and tissues. Epidemiological studies have provided strong evidence for associations with chronic obstructive pulmonary disease (COPD), asthma, bronchitis and cardiovascular disease, while the evidence for a link with lung cancer is less strong. Novel research has provided first hints that exposure to PM might lead to diabetes and central nervous system (CNS) pathology. In the current review, an overview is presented of the toxicological basis for adverse health effects that have been linked to PM inhalation. Oxidative stress and inflammation are discussed as central processes driving adverse effects; in addition, profibrotic and allergic processes are implicated in PM-related diseases. Effects of PM on key cell types considered as regulators of inflammatory, fibrotic and allergic mechanisms are described.
Collapse
Affiliation(s)
- Damiën van Berlo
- Particle Research, Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine University Düsseldorf, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
30
|
Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells. Toxicol In Vitro 2013; 27:2289-98. [PMID: 24100107 DOI: 10.1016/j.tiv.2013.09.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/17/2013] [Accepted: 09/25/2013] [Indexed: 01/15/2023]
Abstract
The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators.
Collapse
|
31
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
32
|
Iskusnykh IY, Popova TN, Agarkov AA, Pinheiro de Carvalho MÂA, Rjevskiy SG. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats. J Toxicol 2013; 2013:870628. [PMID: 23554813 PMCID: PMC3608198 DOI: 10.1155/2013/870628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/30/2022] Open
Abstract
Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9) and glutathione reductase (GR, EC 1.6.4.2) activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr) was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.
Collapse
Affiliation(s)
- Igor Y. Iskusnykh
- Department of Medical Biochemistry and Microbiology, Voronezh State University, University Square 1, Voronezh 394006, Russia
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, University Square 1, Voronezh 394006, Russia
| | - Aleksander A. Agarkov
- Department of Medical Biochemistry and Microbiology, Voronezh State University, University Square 1, Voronezh 394006, Russia
| | | | - Stanislav G. Rjevskiy
- Department of Medical Biochemistry and Microbiology, Voronezh State University, University Square 1, Voronezh 394006, Russia
| |
Collapse
|
33
|
Patel HJ, Kwon S. Length-dependent effect of single-walled carbon nanotube exposure in a dynamic cell growth environment of human alveolar epithelial cells. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:101-108. [PMID: 22854519 DOI: 10.1038/jes.2012.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Despite the great use of nanomaterials for engineering and medical applications, nanomaterials may have adverse consequences by accidental exposure, because of their nanoscale size, composition and shape. Like many nanomaterials, carbon nanotubes (CNTs) have been used for many proven applications, but the size of the CNTs makes them more readily become airborne and can therefore create the risk of being inhaled by a worker. In this study, we evaluated single-walled CNT (SWCNT)-induced effects on cellular responses such as cell proliferation, inflammatory response and oxidative stress in dynamic cell growth condition. A dynamic cell growth environment was established to mimic the dynamic changes in the amount of circumferential and longitudinal expansion and contraction occurred during normal breathing movement in the lung. Two different length (short: outer diameter (OD) 1-2 nm, length 0.5-2 μm; long: OD 1-2 nm, length 5-30 μm) of SWCNTs were used at different exposure concentrations (5, 10 and 20 μg/ml) during the different exposure duration (24, 48 and 72 h). Dynamic environment facilitated altered interaction between SWCNTs and A549 monolayer. Cellular responses in dynamic condition were significantly different from those in static condition. Moreover, cellular responses were dependent on the length of SWCNTs both in static and dynamic cell growth conditions.
Collapse
Affiliation(s)
- Hemang J Patel
- Department of Biological Engineering, Utah State University, Logan, Utah 84322, USA
| | | |
Collapse
|
34
|
Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol 2011; 129:232-9.e1-7. [PMID: 22055874 DOI: 10.1016/j.jaci.2011.09.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/11/2011] [Accepted: 09/29/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inducible nitric oxide synthase (iNOS; encoded by nitric oxide synthase isoform 2 [NOS2]) is the major enzyme for nitric oxide synthesis in airways. As such, measurement of fractional concentration of exhaled nitric oxide (Feno) provides an in vivo assessment of iNOS activity. Short-term exposure to air pollution, haplotypes, and DNA methylation in the NOS2 promoter has been associated independently with iNOS expression, Feno levels, or both. OBJECTIVE We aimed to examine the effects of ambient air pollutants, NOS2 promoter haplotypes, and NOS2 promoter methylation on Feno levels in children. METHODS We selected 940 participants in the Children's Health Study who provided buccal samples and had undergone Feno measurement on the same day. DNA methylation was measured with a bisulfite-PCR Pyrosequencing assay. Seven single nucleotide polymorphisms captured the haplotype diversity in the NOS2 promoter. Average particulate matter with an aerodynamic diameter of 2.5 μm or less (PM(2.5)) and 10 μm (PM(10)) or less and ozone and nitrogen dioxide levels 7 days before Feno measurement were estimated based on air pollution data obtained at central monitoring sites. RESULTS We found interrelated effects of PM(2.5), NOS2 promoter haplotypes, and iNOS methylation on Feno levels. Increased 7-day average PM(2.5) exposure was associated with lower iNOS methylation (P = .01). NOS2 promoter haplotypes were globally associated with NOS2 promoter methylation (P = 6.2 × 10(-8)). There was interaction among 1 common promoter haplotype, iNOS methylation level, and PM(2.5) exposure on Feno levels (P(interaction) = .00007). CONCLUSION Promoter variants in NOS2 and short-term PM(2.5) exposure affect iNOS methylation. This is one of the first studies showing contributions of genetic and epigenetic variations in air pollution-mediated phenotype expression.
Collapse
|
35
|
Hulin M, Annesi-Maesano I, Moreau D, Caillaud D. Association entre pollution particulaire et inflammation des bronches : effet modulateur de l’asthme et de l’atopie. REVUE FRANCAISE D ALLERGOLOGIE 2010. [DOI: 10.1016/j.reval.2010.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Han Wei, Dan Wei, Shuo Yi, Fang Zhang, Wenjun Ding. Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. Hum Exp Toxicol 2010; 30:579-90. [PMID: 20554636 DOI: 10.1177/0960327110374207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been reported that vascular endothelia cell damage is an important precursor to the morbidity and mortality associated with cardiovascular disease exposed to airborne particulate matter (PM). The present study investigated the hypothesis that urban fine (PM(2.5)) particles could cause cytotoxicity via oxidative stress in human umbilical vein endothelial cells, EA.hy926. The concentrations of metal elements (Cr, Fe, Ni, Cu, Zn, Mo, Cd and Pb) in PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) were determined by inductively coupled plasma - mass spectrometry (ICP-MS). Iron (Fe), Zn and Pb were highly enriched in all the samples. Exposure of the cultured EA.hy926 cells to PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) led to cell death, reactive oxygen species (ROS) increase, mitochondrial transmembrane potential (ΔΨm) disruption and NF-κB activation, respectively. The ROS increase by exposure to PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) triggered the activation of nuclear factor (NF)-κB, which means that PM(2.5) particles exert cytotoxicity by an apopotic process. However, the induction of cytotoxicity by PM(2.5) suspension, water-soluble and water-insoluble fractions of PM(2.5) was reversed by pretreatment with superoxide dismutase (SOD). These results suggest that each fraction of PM(2.5) has a potency to cause oxidative stress in endothelial cells. ROS was generated through PM(2.5)-mediated mitochondrial apoptotic pathway, which may induce direct interaction between metal elements and endothelia cells.
Collapse
Affiliation(s)
- Han Wei
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P R China
| | | | | | | | | |
Collapse
|
37
|
Oxidative stress and apoptosis are induced in human endothelial cells exposed to urban particulate matter. Toxicol In Vitro 2010; 24:135-41. [DOI: 10.1016/j.tiv.2009.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 12/20/2022]
|
38
|
Flamant-Hulin M, Caillaud D, Sacco P, Penard-Morand C, Annesi-Maesano I. Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:272-83. [PMID: 20077297 DOI: 10.1080/15287390903249206] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Air pollution is associated with a wide range of adverse respiratory events. In order to study the mechanism associated with these effects, the relationships between fractional exhaled nitric oxide (FeNO), a potential marker of airway inflammation, and exposure to air pollution were examined in schoolchildren. FeNO was measured in 104 children (34 asthmatics and 70 non-asthmatics) drawn from the general population simultaneously with air pollution assessments (fine particles with an aerodiameter under 2.5 microm, nitrogen dioxide, acetaldehyde, and formaldehyde, with pumps and passive samplers) in schoolyards and classrooms. Asthmatics exhaled more FeNO than non-asthmatics. FeNO levels were significantly elevated in both asthmatic and non-asthmatic children exposed to high concentrations of formaldehyde, acetaldehyde, and PM(2.5). Differences between high versus low exposure in non-asthmatics resulted in an FeNO increase ranging from 45% for indoor acetaldehyde to 62% for indoor PM(2.5). Stronger associations were found in non-asthmatic children who were atopic, suggesting that atopic children may be more sensitive to air pollution than non-atopic children. Exposure to air pollution may lead to airway inflammation, as measured by FeNO, in schoolchildren. These associations occur even in children with no history of airway damage and seem to be enhanced in atopic subjects.
Collapse
|
39
|
Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:445-61. [PMID: 20155585 PMCID: PMC3884809 DOI: 10.1080/15287390903489422] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Engineered nanoparticles (NP) are being developed and incorporated in a number of commercial products, raising the potential of human exposure during manufacture, use, and disposal. Although data concerning the potential toxicity of some NP have been reported, validated simple assays are lacking for predicting their in vivo toxicity. The aim of this study was to evaluate new response metrics based on chemical and biological activity of NP for screening assays that can be used to predict NP toxicity in vivo. Two cell-free and two cell-based assays were evaluated for their power in predicting in vivo toxicity of eight distinct particle types with widely differing physicochemical characteristics. The cell-free systems comprised fluorescence- and electron spin resonance-based assays of oxidant activity. The cell-based systems also used electron spin resonance (ESR) as well as luciferase reporter activity to rank the different particle types in comparison to benchmark particles of low and high activity. In vivo experiments evaluated acute pulmonary inflammatory responses in rats. Endpoints in all assays were related to oxidative stress and responses were expressed per unit NP surface area to compare the results of different assays. Results indicated that NP are capable of producing reactive species, which in biological systems lead to oxidative stress. Copper NP had the greatest activity in all assays, while TiO(2) and gold NP generally were the least reactive. Differences in the ranking of NP activity among the assays were found when comparisons were based on measured responses. However, expressing the chemical (cell-free) and biological (cells; in vivo) activity per unit particle surface area showed that all in vitro assays correlated significantly with in vivo results, with the cellular assays correlating the best. Data from this study indicate that it is possible to predict acute in vivo inflammatory potential of NP with cell-free and cellular assays by using NP surface area-based dose and response metrics, but that a cellular component is required to achieve a higher degree of predictive power.
Collapse
Affiliation(s)
- Erik K Rushton
- Department of Environmental Medicine, University of Rochester, Rochester, New York 14624, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Interplay Between Cytokine-Induced and Cyclic Equibiaxial Deformation-Induced Nitric Oxide Production and Metalloproteases Expression in Human Alveolar Epithelial Cells. Cell Mol Bioeng 2009; 2:615-624. [PMID: 23926450 DOI: 10.1007/s12195-009-0092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ventilator-induced lung overdistension has been a growing concern in the management of mechanically ventilated patients. Mechanical ventilation triggers or enhances the net inflammatory and tissue remodeling activities. Although it has been shown that proinflammatory and tissue remodeling factors play important roles during airway remodeling, the interplay between them is not well understood. Thus, our objective was to study and characterize the molecular mechanism of cyclic equibiaxial deformation-induced airway inflammation and remodeling either in the presence or absence of a pre-existing inflammatory condition. This study was done using an in vitro dynamic model, which can simulate different mechanical ventilative conditions. Type II alveolar epithelial cell (A549) monolayers were exposed to the different levels of mechanical ventilative conditions using the Flexcell® Tension Plus™ 4000T system, which generated the different levels of cyclic equibiaxial deformation (5, 10, 15, and 20%) at 0.2 Hz deformation frequency. The production of nitric oxide (NO), the expression of metalloprotease-2 (MMP-2)/tissue inhibitor metalloprotease-2 (TIMP-2), and the activation of MMP-2 were measured under the different levels of cyclic equibiaxial deformation either in the presence or absence of TNF-α. Our study indicated that cyclic equibiaxial deformation-induced production of NO and MMP-2/TIMP-2. Higher levels of cyclic equibiaxial deformation increased the expression of the active form of MMP-2. In particular, in the presence of TNF-α, the more active form of MMP-2 was detected during both cyclic equibiaxial deformation and remodeling periods.
Collapse
|
41
|
Abstract
Cutaneous melanoma preferentially metastasizes via the lymphatic route. However, the mechanisms of lymphatic invasion and metastasis to regional lymph nodes are poorly understood. Nitric oxide is a free radical molecule synthesized from L-arginine by nitric oxide synthases that plays a critical role in various physiological and pathological processes, including tumor growth and angiogenesis. We have tested whether inducible nitric oxide synthase expression correlates with lymphatic vessel density identified with D2-40 antibody and/or blood microvessel density identified with CD105/endoglin in a series of melanocytic nevi (n=28) and cutaneous melanomas (n=38), representative of various pT. Inducible nitric oxide synthase expression was significantly lower in melanocytic nevi in comparison with primary and metastatic melanomas (P<0.001). Mean microvessel density was significantly higher in primary and metastatic melanomas in comparison with melanocytic nevi (P<0.001 for intratumoral and P=0.001 for peritumoral vessels). Vertical growth phase melanomas showed a higher intratumoral microvessel density in comparison with radial growth phase melanomas (P=0.02). The number of peritumoral lymphatics was significantly lower in nevi as compared with primary and metastatic melanomas (P=0.01). No correlation between microvessel or lymphatic vessel and clinical outcome was found in melanomas. A significant direct correlation was observed between inducible nitric oxide synthase immunostaining in melanocytic tumor cells and the density of lymphatic vessels (peritumoral: P=0.001; intratumoral: P=0.08), and the density of peritumoral blood microvessel (P=0.02). Our findings support the hypothesis that inducible nitric oxide synthase is implicated not only in blood, but also in lymphatic vascular neoformation in melanoma. Mechanistic studies are needed to address the possibility that inducible nitric oxide synthase controls lymphangiogenesis, dissemination and lymphatic borne metastases.
Collapse
|
42
|
Tsuji T, Kato A, Yasuda H, Miyaji T, Luo J, Sakao Y, Ito H, Fujigaki Y, Hishida A. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol Appl Pharmacol 2008; 234:202-8. [PMID: 18992762 DOI: 10.1016/j.taap.2008.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/15/2008] [Accepted: 09/27/2008] [Indexed: 10/21/2022]
Abstract
Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p<0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular cells.
Collapse
Affiliation(s)
- Takayuki Tsuji
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sinke AP, Jayakumar AR, Panickar KS, Moriyama M, Reddy PVB, Norenberg MD. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem 2008; 106:2302-11. [PMID: 18662246 PMCID: PMC2597622 DOI: 10.1111/j.1471-4159.2008.05549.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocyte swelling and brain edema are major neuropathological findings in the acute form of hepatic encephalopathy (fulminant hepatic failure), and substantial evidence supports the view that elevated brain ammonia level is an important etiological factor in this condition. Although the mechanism by which ammonia brings about astrocyte swelling remains to be determined, oxidative/nitrosative stress and mitogen-activated protein kinases (MAPKs) have been considered as important elements in this process. One factor known to be activated by both oxidative stress and MAPKs is nuclear factor kappaB (NFkappaB), a transcription factor that activates many genes, including inducible nitric oxide synthase (iNOS). As the product of iNOS, nitric oxide (NO), is known to cause astrocyte swelling, we examined the potential involvement of NFkappaB in ammonia-induced astrocyte swelling. Western blot analysis of cultured astrocytes showed a significant increase in NFkappaB nuclear translocation (a measure of NFkappaB activation) from 12 h to 2 days after treatment with NH(4)Cl (5 mM). Cultures treated with anti-oxidants, including superoxide dismutase, catalase, and vitamin E as well as the MAPKs inhibitors, SB239063 (an inhibitor of p38-MAPK) and SP600125 (an inhibitor of c-Jun N-terminal kinase), significantly diminished NFkappaB activation by ammonia, supporting a role of oxidative stress and MAPKs in NFkappaB activation. The activation of NFkappaB was associated with increased iNOS protein expression and NO generation, and these changes were blocked by BAY 11-7082, an inhibitor of NFkappaB. Additionally, ammonia-induced astrocyte swelling was inhibited by the NFkappaB inhibitors, BAY 11-7082 and SN-50, thereby implicating NFkappaB in the mechanism of astrocyte swelling. Our studies indicate that cultured astrocytes exposed to ammonia display NFkappaB activation, which is likely to be a consequence of oxidative stress and activation of MAPKs. NFkappaB activation appears to contribute to the mechanism of ammonia-induced astrocyte swelling, apparently through its up-regulation of iNOS protein expression and the subsequent generation of NO.
Collapse
Affiliation(s)
- Anne P Sinke
- Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Zhao Y, Usatyuk PV, Gorshkova IA, He D, Wang T, Moreno-Vinasco L, Geyh AS, Breysse PN, Samet JM, Spannhake EW, Garcia JGN, Natarajan V. Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells. Am J Respir Cell Mol Biol 2008; 40:19-30. [PMID: 18617679 DOI: 10.1165/rcmb.2008-0105oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Particulate matter (PM) in ambient air is a risk factor for human respiratory and cardiovascular diseases. The delivery of PM to airway epithelial cells has been linked to release of proinflammatory cytokines; however, the mechanisms of PM-induced inflammatory responses are not well-characterized. This study demonstrates that PM induces cyclooxygenase (COX)-2 expression and IL-6 release through both a reactive oxygen species (ROS)-dependent NF-kappaB pathway and an ROS-independent C/EBPbeta pathway in human bronchial epithelial cells (HBEpCs) in culture. Treatment of HBEpCs with Baltimore PM induced ROS production, COX-2 expression, and IL-6 release. Pretreatment with N-acetylcysteine (NAC) or EUK-134, in a dose-dependent manner, attenuated PM-induced ROS production, COX-2 expression, and IL-6 release. The PM-induced ROS was significantly of mitochondrial origin, as evidenced by increased oxidation of the mitochondrially targeted hydroethidine to hydroxyethidium by reaction with superoxide. Exposure of HBEpCs to PM stimulated phosphorylation of NF-kappaB and C/EBPbeta, while the NF-kappaB inhibitor, Bay11-7082, or C/EBPbeta siRNA attenuated PM-induced COX-2 expression and IL-6 release. Furthermore, NAC or EUK-134 attenuated PM-induced activation of NF-kappaB; however, NAC or EUK-134 had no effect on phosphorylation of C/EBPbeta. In addition, inhibition of COX-2 partly attenuated PM-induced Prostaglandin E2 and IL-6 release.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dagher Z, Garçon G, Billet S, Verdin A, Ledoux F, Courcot D, Aboukais A, Shirali P. Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol 2007; 27:284-90. [PMID: 17265450 DOI: 10.1002/jat.1211] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To contribute to improving knowledge on the adverse health effects induced by particulate matter (PM) air pollution, an extensive investigation was undertaken of the underlying mechanisms of action activated by PM(2.5) air pollution collected in Dunkerque, a strongly industrialized French seaside city. Their chemical and physical characteristics have been previously determined, and earlier in vitro short-term studies have shown them to cause dose-dependent and time-dependent oxidative damage, gene expression and protein secretion of inflammatory mediators, and apoptotic events in human lung epithelial cells (L132) in culture. Hence, this work studied the activation of nuclear factor-kappa B (NF-kappaB)/inhibitory kappa B (IkappaB) by Dunkerque city PM(2.5) in these target cells, by determination of phosphorylated p65 and phosphorylated IkappaBalpha protein levels in cytoplasmic extracts, and p65 and p50 DNA binding in nuclear extracts. In PM-exposed L132 cells, there were concentration- and/or time-dependent increases in nuclear p65 and cytoplasmic IkB-alpha phosphorylation, and nuclear p65 and p50 DNA binding. Taken together, these results showed that Dunkerque city PM(2.5) were involved in the activation of the NF-kappaB/IkappaB complex, notably through the occurrence of oxidative stress conditions, and, therefore, in the gene expression and protein secretion of inflammatory mediators in target L132 cells. Hence, these findings suggested that the activation of the NF-kappaB/IkappaB complex preceded cytotoxicity in Dunkerque city PM-exposed L132 cells.
Collapse
Affiliation(s)
- Zeina Dagher
- LCE EA2598, Toxicologie Industrielle et Environnementale, Maison de la Recherche en Environnement Industriel de Dunkerque 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sharma AK, Jensen KA, Rank J, White PA, Lundstedt S, Gagne R, Jacobsen NR, Kristiansen J, Vogel U, Wallin H. Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 633:95-111. [PMID: 17683978 DOI: 10.1016/j.mrgentox.2007.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 02/19/2007] [Accepted: 05/07/2007] [Indexed: 11/21/2022]
Abstract
Airborne particulate matter (PM) was sampled by use of an electrostatic sampler in an oven hall and a receiving hall in a waste-incineration energy plant, and from urban air in a heavy-traffic street and from background air in Copenhagen. PM was sampled for 1-2 weeks, four samples at each site. The samples were extracted and examined for mutagenicity in Salmonella typhimurium strains TA98, YG1041 and YG5161, for content of inorganic elements and for the presence of eight polycyclic aromatic hydrocarbons. The induction of IL-6 and IL-8 mRNA expression and the presence of DNA damage - tested by the comet assay - were determined after 24-h incubations with human A549 lung epithelial cells. The PM(2.5) concentration was about twofold greater in the oven hall than in the receiving hall. The particle size distribution in the receiving hall was similar to that in street air (maximum mode at about 25nm), but the distribution was completely different in the oven hall (maximum mode at about 150nm). Also chemically, the samples from the oven hall were highly different from the other samples. PM extracts from the receiving hall, street and background air were more mutagenic than the PM extracts from the oven hall. PM from all four sites caused similar levels of DNA damage in A549 cells; only the oven hall samples gave results that were statistically significantly different from those obtained with street-air samples. The receiving hall and the urban air samples were similarly inflammatory (relative IL-8 mRNA expression), whereas the oven hall did not cause a statistically significant increase in IL-8 mRNA expression. A principal component analysis separated the oven hall and the receiving hall by the first principal component. These two sites were separated from street and background air with the second principal component. Several clusters of constituents were identified. One cluster consisted of all the polycyclic aromatic hydrocarbons (PAH), several groups of metals and one group of the biological endpoints (DNA damage, IL-6 and IL-8 mRNA expression). The PAH and the inorganic content of the air in the receiving hall may be due to vehicle emissions and suspended waste particles. The inorganic content in the street and background air may have been influenced by break wear, road emissions and long-range transport. The results from a partial least-square regression analysis predicted that both PAHs and a group of metals including Fe and Mn contributed to IL-6 and IL-8 induction. Only Mn and Sr were predicted to influence DNA damage statistically significantly. Among the PAHs only chrysene had influence on DNA damage. The PM from the oven hall was markedly different from the PM at other locations in particle size distribution, chemical composition and the resulting biological effects when A549 cells were incubated with the PM. These characteristics and observations in the oven hall indicated that the PM source was oven exhaust, which was well combusted.
Collapse
|
47
|
Zhang J, Peng B, Chen X. Expressions of nuclear factor kappaB, inducible nitric oxide synthase, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res 2006; 11:7334-43. [PMID: 16243805 DOI: 10.1158/1078-0432.ccr-05-0241] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the expressions of nuclear factor kappaB (NF-kappaB p65), inducible nitric oxide synthase enzyme (iNOS), and vascular endothelial growth factor (VEGF) in relation to angiogenesis (microvessel density, MVD) and clinical outcomes in adenoid cystic carcinoma (ACC) of salivary glands. METHODS Immunohistochemical staining was used to quantify the protein expression levels of NF-kappaB p65, iNOS, and VEGF in 80 surgically resected ACCs and 20 normal salivary tissues. In all cases of ACCs, MVD was evaluated by counting CD34-reactive endothelial cells or endothelial cell clusters. RESULTS The nuclear localization of NF-kappaB p65 was only detected in ACC cells. Both iNOS and VEGF staining activities in ACCs were more significant than those in normal gland tissues (P < 0.01). MVD had significant correlations with NF-kappaB p65, iNOS, and VEGF expressions (P < 0.01). In three histologic types of ACCs, the NF-kappaB, iNOS, VEGF expressions, and MVD were significantly higher in solid type than in cribriform and tubular types (P < 0.01). The NF-kappaB, iNOS, VEGF expressions, and MVD were significantly correlated with clinical stage, tumor size, vascular invasion, recurrence, and metastasis (P < 0.05). Multivariate analysis showed NF-kappaB, iNOS and VEGF expression, MVD, solid histotype, and perineural invasion had an independent prognostic effect on overall survival. CONCLUSION The expressions of NF-kappaB p65, iNOS, and VEGF were related with MVD. Clinical outcomes raised the possibility that the overexpression of these cytokines might contribute to tumor angiogenesis and have prognostic value in ACCs.
Collapse
Affiliation(s)
- Jiali Zhang
- Key Lab for Oral Biomedical Engineering, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, PR China
| | | | | |
Collapse
|
48
|
Higashimoto Y, Ohata M, Yamagata Y, Iwata T, Masuda M, Ishiguchi T, Okada M, Satoh H, Itoh H. Effect of the adenovirus E1A gene on nitric oxide production in alveolar epithelial cells. Clin Microbiol Infect 2005; 11:644-50. [PMID: 16008617 DOI: 10.1111/j.1469-0691.2005.01188.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study determined the effect of the adenovirus E1A gene on nitric oxide (NO) production in alveolar epithelial (A549) cells. E1A-positive A549 cells (E1A transfectants), E1A-negative A549 cells (control transfectants) and untransfected A549 cells were placed in 96-well tissue culture plates. After stimulation with lipopolysaccharide (LPS) or cytokine mixture (CM), the biochemical reaction products of NO (nitrite and nitrate) in the culture medium were measured by chemiluminescence. The inducible (iNOS) and the endothelial (eNOS) isoforms of nitric oxide synthase (NOS) protein expression were examined by Western blotting. iNOS mRNA expression was examined by Northern blotting and RT-PCR. CM-induced NO production by E1A-positive A549 cells was significantly lower than that of E1A-negative cells (p < 0.0001). LPS stimulation failed to enhance NO production in both cell types. CM induced iNOS protein expression in E1A-negative A549 cells, but not in E1A-positive cells. eNOS protein expression was constitutive and was not affected by CM stimulation, LPS stimulation or E1A. CM induced iNOS mRNA expression in E1A-negative A549 cells, but not in E1A-positive cells. In conclusion, the adenovirus E1A gene suppressed NO production through transcriptional control of the iNOS gene in A549 cells. This inhibition of NO production may enable the virus to persist in human tissue, since NO is an antiviral effector of the innate immune system.
Collapse
Affiliation(s)
- Y Higashimoto
- Department of Internal Medicine, Wakayama Medical University, Kihoku Hospital, Ito-gun, Wakayama Prefecture, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agnetti G, Bordoni A, Angeloni C, Leoncini E, Guarnieri C, Caldarera CM, Biagi PL, Hrelia S. Green tea modulation of inducible nitric oxide synthase in hypoxic/reoxygenated cardiomyocytes. Biochimie 2005; 87:457-60. [PMID: 15820752 DOI: 10.1016/j.biochi.2005.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Hypoxia/reoxygenation (H/R) is one of the causes of the increased expression of inducible nitric oxide synthase (iNOS) in cardiomyocytes. Since an aberrant NOS induction has detrimental consequences, we evaluated the effect of a green tea extract (GTE) on the NOS induction and activity in H/R-cardiomyocytes to define a nutritional strategy. Cultured rat cardiomyocytes were exposed to H/R in the presence of two concentrations of a green tea extract (GTE), which is reported to inhibit NOS expression and activity in different cells. In cultured cardiomyocytes two NOS isoforms were constitutively expressed, but only iNOS was induced by H/R. GTE supplementation at the lowest concentration, comparable to that in human plasma after dietary consumption, was ineffective, while the highest, comparable to that achievable by dietary supplements, counteracted the effect of H/R on iNOS induction and activity. It is necessary to verify in humans the relationship between the modulation of NO production and green tea dietary consumption.
Collapse
Affiliation(s)
- G Agnetti
- Department of Biochemistry G. Moruzzi, Centro Studi e Ricerche sul Metabolismo Cardiaco, University of Bologna, Via Irnerio, 48-4016 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|