1
|
Wu MS, Chien CC, Chang J, Chen YC. Pro-apoptotic effect of haem oxygenase-1 in human colorectal carcinoma cells via endoplasmic reticular stress. J Cell Mol Med 2019; 23:5692-5704. [PMID: 31199053 PMCID: PMC6653387 DOI: 10.1111/jcmm.14482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Several biological effects of haem oxygenase (HO)‐1, including anti‐inflammatory, antiapoptotic and antioxidative properties were reported; however, the role of HO‐1 in apoptosis is still unclear. In the presence of stimulation by cobalt protoporphyrin (CoPP), an HO‐1 inducer, apoptotic characteristics were observed, including DNA laddering, hypodiploid cells, and cleavages of caspase (Casp)‐3 and poly(ADP) ribose polymerase (PARP) proteins in human colon carcinoma COLO205, HCT‐15, LOVO and HT‐29 cells in serum‐free (SF) conditions with increased HO‐1, but not heat shock protein 70 (HSP70) or HSP90. The addition of 10% foetal bovine serum (FBS) or 1% bovine serum albumin accordingly inhibited CoPP‐induced apoptosis and HO‐1 protein expression in human colon cancer cells. CoPP‐induced apoptosis of colon cancer cells was prevented by the addition of the pan‐caspase inhibitor, Z‐VAD‐FMK (VAD), and the Casp‐3 inhibitor, Z‐DEVD‐FMK (DEVD). N‐Acetyl cysteine inhibited reactive oxygen species‐generated H2O2‐induced cell death with reduced intracellular peroxide production, but did not affect CoPP‐induced apoptosis in human colorectal carcinoma (CRC) cells. Two CoPP analogs, ferric protoporphyrin and tin protoporphyrin, did not affect the viability of human CRC cells or HO‐1 expression by those cells, and knockdown of HO‐1 protein expression by HO‐1 small interfering (si)RNA reversed the cytotoxic effect elicited by CoPP. Furthermore, the carbon monoxide (CO) donor, CORM, but not FeSO4 or biliverdin, induced DNA ladders, and cleavage of Casp‐3 and PARP proteins in human CRC cells. Increased phosphorylated levels of the endoplasmic reticular (ER) stress proteins, protein kinase R‐like ER kinase (PERK), and eukaryotic initiation factor 2α (eIF2α) by CORM and CoPP were identified, and the addition of the PERK inhibitor, GSK2606414, inhibited CORM‐ and CoPP‐induced apoptosis. Increased GRP78 level and formation of the HO‐1/GRP78 complex were detected in CORM‐ and CoPP‐treated human CRC cells. A pro‐apoptotic role of HO‐1 against the viability of human CRC cells via induction of CO and ER stress was firstly demonstrated herein.
Collapse
Affiliation(s)
- Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands. TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0136-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Sułkowski L, Pawełczak B, Chudzik M, Maciążek-Jurczyk M. Characteristics of the Protoporphyrin IX Binding Sites on Human Serum Albumin Using Molecular Docking. Molecules 2016; 21:molecules21111519. [PMID: 27869697 PMCID: PMC6273174 DOI: 10.3390/molecules21111519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 12/03/2022] Open
Abstract
Human serum albumin (HSA) is the main plasma protein responsible for a distribution of drugs in the human circulatory system. The binding to HSA is one of the factors that determines both the pharmacological actions and the side effects of drugs. The derivative of heme, protoporphyrin IX (PpIX), is a hydrophobic photosensitizer widely used in photodynamic diagnosis and therapy of various malignant disorders. Using absorption and fluorescence spectroscopy, it has been demonstrated that PpIX forms complexes with HSA. Its binding sites in the tertiary structure of HSA were found in the subdomains IB and IIA. PpIX binds to HSA in one class of binding sites with the association constant of 1.68 × 105 M−1 and 2.30 × 105 M−1 for an excitation at wavelength λex = 280 nm and 295 nm, respectively. The binding interactions between HSA and PpIX have been studied by means of molecular docking simulation using the CLC Drug Discovery Workbench (CLC DDWB) computer program. PpIX creates a strong ‘sandwich-type’ complex between its highly conjugated porphine system and aromatic side chains of tryptophan and tyrosine. In summary, fluorescent studies on binding interactions between HSA and PpIX have been confirmed by the results of computer simulation.
Collapse
Affiliation(s)
- Leszek Sułkowski
- Department of General and Vascular Surgery, Regional Specialist Hospital, Bialska 104/118, 42-218 Częstochowa, Poland.
| | - Bartosz Pawełczak
- Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Mariola Chudzik
- Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
4
|
Üstün E, Özgür A, Coşkun KA, Demir S, Özdemir İ, Tutar Y. CO-releasing properties and anticancer activities of manganese complexes with imidazole/benzimidazole ligands. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1231921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Elvan Üstün
- Faculty of Art and Science, Department of Chemistry, Ordu University, Ordu, Turkey
| | - Aykut Özgür
- Faculty of Natural Sciences and Engineering, Department of Bioengineering, Gaziosmanpaşa University, Tokat, Turkey
| | - Kübra A. Coşkun
- Faculty of Natural Sciences and Engineering, Department of Bioengineering, Gaziosmanpaşa University, Tokat, Turkey
| | - Serpil Demir
- Faculty of Science, Department of Chemistry, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Faculty of Science, Department of Chemistry, İnönü University, Malatya, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
5
|
Ma HR, Peng HS, You FT, Ping JT, Zhou C, Guo LY. Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors. Methods Appl Fluoresc 2016; 4:035001. [DOI: 10.1088/2050-6120/4/3/035001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Riccio A, Gogliettino M, Palmieri G, Balestrieri M, Facchiano A, Rossi M, Palumbo S, Monti G, Cocca E. A New APEH Cluster with Antioxidant Functions in the Antarctic Hemoglobinless Icefish Chionodraco hamatus. PLoS One 2015; 10:e0125594. [PMID: 25946123 PMCID: PMC4422685 DOI: 10.1371/journal.pone.0125594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
Acylpeptide hydrolase (APEH) is a ubiquitous cytosolic protease that plays an important role in the detoxification of oxidised proteins. In this work, to further explore the physiological role of this enzyme, two apeh cDNAs were isolated from the Chionodraco hamatus icefish, which lives in the highly oxygenated Antarctic marine environment. The encoded proteins (APEH-1(Ch) and APEH-2(Ch)) were characterised in comparison with the uniquely expressed isoform from the temperate fish Dicentrarchus labrax (APEH-1Dl) and the two APEHs from the red-blooded Antarctic fish Trematomus bernacchii (APEH-1(Tb) and APEH-2(Tb)). Homology modelling and kinetic characterisation of the APEH isoforms provided new insights into their structure/function properties. APEH-2 isoforms were the only ones capable of hydrolysing oxidised proteins, with APEH-2(Ch) being more efficient than APEH-2(Tb) at this specific function. Therefore, this ability of APEH-2 isoforms is the result of an evolutionary adaptation due to the pressure of a richly oxygenated environment. The lack of expression of APEH-2 in the tissues of the temperate fish used as the controls further supported this hypothesis. In addition, analysis of gene expression showed a significant discrepancy between the levels of transcripts and those of proteins, especially for apeh-2 genes, which suggests the presence of post-transcriptional regulation mechanisms, triggered by cold-induced oxidative stress, that produce high basal levels of APEH-2 mRNA as a reserve that is ready to use in case of the accumulation of oxidised proteins.
Collapse
Affiliation(s)
- Alessia Riccio
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
| | - Marta Gogliettino
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
| | - Gianna Palmieri
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
- * E-mail:
| | - Marco Balestrieri
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
| | - Angelo Facchiano
- National Research Council, Institute of Food Sciences (CNR-ISA), Avellino, Italy
| | - Mosè Rossi
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
| | - Stefania Palumbo
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
| | | | - Ennio Cocca
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Napoli, Italy
| |
Collapse
|
7
|
Jo H, Patterson V, Stoessel S, Kuan CY, Hoh J. Protoporphyrins enhance oligomerization and enzymatic activity of HtrA1 serine protease. PLoS One 2014; 9:e115362. [PMID: 25506911 PMCID: PMC4266670 DOI: 10.1371/journal.pone.0115362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/22/2014] [Indexed: 01/31/2023] Open
Abstract
High temperature requirement protein A1 (HtrA1), a secreted serine protease of the HtrA family, is associated with a multitude of human diseases. However, the exact functions of HtrA1 in these diseases remain poorly understood. We seek to unravel the mechanisms of HtrA1 by elucidating its interactions with chemical or biological modulators. To this end, we screened a small molecule library of 500 bioactive compounds to identify those that alter the formation of extracellular HtrA1 complexes in the cell culture medium. An initial characterization of two novel hits from this screen showed that protoporphyrin IX (PPP-IX), a precursor in the heme biosynthetic pathway, and its metalloporphyrin (MPP) derivatives fostered the oligomerization of HtrA1 by binding to the protease domain. As a result of the interaction with MPPs, the proteolytic activity of HtrA1 against Fibulin-5, a specific HtrA1 substrate in age-related macular degeneration (AMD), was increased. This physical interaction could be abolished by the missense mutations of HtrA1 found in patients with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Furthermore, knockdown of HtrA1 attenuated apoptosis induced by PPP-IX. These results suggest that PPP-IX, or its derivatives, and HtrA1 may function as co-factors whereby porphyrins enhance oligomerization and the protease activity of HtrA1, while active HtrA1 elevates the pro-apoptotic actions of porphyrin derivatives. Further analysis of this interplay may shed insights into the pathogenesis of diseases such as AMD, CARASIL and protoporphyria, as well as effective therapeutic development.
Collapse
Affiliation(s)
- Hakryul Jo
- Department of Environmental Health Science, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Victoria Patterson
- Department of Environmental Health Science, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sean Stoessel
- Department of Environmental Health Science, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chia-Yi Kuan
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Josephine Hoh
- Department of Environmental Health Science, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol 2014; 5:126. [PMID: 24926267 PMCID: PMC4045156 DOI: 10.3389/fphar.2014.00126] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis.
Collapse
Affiliation(s)
- Tamara Korolnek
- Department of Animal & Avian Sciences, University of Maryland, College Park MD, USA ; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park MD, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park MD, USA ; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park MD, USA
| |
Collapse
|
9
|
The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol Appl Pharmacol 2013; 274:55-62. [PMID: 24211270 DOI: 10.1016/j.taap.2013.10.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022]
Abstract
Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO)3Cl2]2 (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic.
Collapse
|
10
|
Pelham C, Jimenez T, Rodova M, Rudolph A, Chipps E, Islam MR. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1257-1265. [PMID: 24184271 DOI: 10.1016/j.bbagrm.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression.
Collapse
Affiliation(s)
- Christopher Pelham
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Tamara Jimenez
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Marianna Rodova
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Angela Rudolph
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Elizabeth Chipps
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - M Rafiq Islam
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| |
Collapse
|
11
|
Wang J, Wang D, Li Y, Gao Y, Wang S, Zuo H, Xu X, Wang S, Peng R. Microarray analysis of altered gene expression and the role of ATF3 in HK-2 cells treated with hemin. Ren Fail 2013; 35:624-32. [PMID: 23560949 DOI: 10.3109/0886022x.2013.780619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To identify gene expression changes and the role of activating transcription factor 3 (ATF3) in hemin toxicity in renal tubular epithelial cells, then elucidate molecular mechanisms of hemin toxicity on renal tubular epithelial cells. METHODS An oligo array comprising 35,035 genes was used to compare differential gene expression in hemin-treated and non-treated HK-2 cells (human renal proximal tubular epithelial cells), and the role of ATF3 in hemin toxicity was assessed using siRNA technique. RESULTS A total of 128 mRNAs were at least twofold up-regulated and 101 mRNAs were at least twofold down-regulated after hemin treatment. Expression levels of ATF3, heat shock protein 70, c-fos, and c-jun were remarkably increased. Hemin also suppressed nuclear factor-kappa B inhibitor α, β-2 adrenergic receptor, and interleukin-6 mRNA amounts more than twofold. We further demonstrated the protective role of ATF3 in hemin cytotoxicity. CONCLUSIONS The data suggest that hemin caused multiple changes of gene expression in HK-2 cells, and ATF3 protects against hemin cytotoxicity.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages. Shock 2013; 38:549-58. [PMID: 23042187 DOI: 10.1097/shk.0b013e31826b2826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although prostaglandins (PGs) were reported to exert proinflammatory and anti-inflammatory effects in macrophages, their action mechanisms remain unclear. The effects of PGs including PGJ2 (J2), Δ-PGJ2 (Δ), 15-deoxy-Δ PGJ2 (15d), PGE2 (E2), and PGF2α (F2α) on lipopolysaccharide (LPS)-, lipoteichoic acid (LTA)-, and peptidoglycan (PGN)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production by RAW264.7 macrophages were investigated. First, we found that induction of cyclooxygenase 2 (COX-2) protein occurred at a time earlier than that of heme oxygenase 1 (HO-1) protein, and the addition of the COX-2 inhibitor NS398 reduced HO-1 protein expression in LPS-, LTA-, and PGN-treated RAW264.7 macrophages. Incubation of RAW264.7 macrophages with the indicated PGs showed that J2, Δ, and 15d significantly induced HO-1 protein expression; however, E2 and F2α did not. Heme oxygenase 1 protein induced by J2, Δ, and 15d was inhibited by the transcriptional inhibitor, actinomycin (Act) D; the translational inhibitor, cycloheximide; and the antioxidant, N-acetyl cysteine (NAC). Increases in intracellular peroxide levels by J2, Δ, and 15d were detected via a 2',7'™-dichlorofluorescein diacetate (DCFH-DA) analysis, and they were prevented by the addition of NAC. In addition, J2, Δ, and 15d produced significant inhibition of LPS-, LTA-, and PGN-induced iNOS protein and NO production by RAW264.7 cells, in accordance with increased HO-1 protein expression. Reductions of LPS-, LTA-, and PGN-induced phosphorylated c-Jun N-terminal kinase, c-Jun protein, and activator protein 1 luciferase activity by J2, Δ, and 15d were identified, and the addition of the HO-1 inhibitor, tin protoporphyrin, reversed the inhibitory effects of Δ and 15d on LPS- and LTA-induced iNOS/NO, phosphorylated c-Jun N-terminal kinase, and c-Jun protein expressions by macrophages. Knockdown of HO-1 protein expression by HO-1 small interfering RNA blocked Δ and 15d inhibition of LPS- and LTA-induced events. Moreover, the compound, cyclopentenone (CP), which mimics the CP moiety of 15d, and its analog cyclohexenone were used, and cyclohexenone showed more potent induction of the HO-1 protein with effective inhibition of LPS-, LTA-, and PGN-induced iNOS/NO production than CP in macrophages. Reactive oxygen species-dependent HO-1 protein expression by PGs, which inhibited LPS-, LTA-, and PGN-induced iNOS/NO production, was identified in macrophages.
Collapse
|
13
|
Liu SY, Chen CL, Yang TT, Huang WC, Hsieh CY, Shen WJ, Tsai TT, Shieh CC, Lin CF. Albumin prevents reactive oxygen species-induced mitochondrial damage, autophagy, and apoptosis during serum starvation. Apoptosis 2012; 17:1156-69. [DOI: 10.1007/s10495-012-0758-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Aggeli IK, Theofilatos D, Beis I, Gaitanaki C. Insulin-induced oxidative stress up-regulates heme oxygenase-1 via diverse signaling cascades in the C2 skeletal myoblast cell line. Endocrinology 2011; 152:1274-83. [PMID: 21325398 DOI: 10.1210/en.2010-1319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Impaired insulin sensitivity (insulin resistance) is a common denominator in many metabolic disorders, exerting pleiotropic effects on skeletal muscle, liver, and adipose tissue function. Heme oxygenase-1 (HOX-1), the rate-limiting enzyme in heme catabolism, has recently been shown to confer an antidiabetic effect while regulating cellular redox-buffering capacity. Therefore, in the present study, we probed into the mechanisms underlying the effect of insulin on HOX-1 in C2 skeletal myoblasts. Hence, insulin was found to suppress C2 myoblasts viability via stimulation of oxidative stress, with HOX-1 counteracting this action. Insulin induced HOX-1 expression in a time- and dose-dependent manner, an effect attenuated by selective inhibitors of ERK1/2 (PD98059), Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine), and c-Jun terminal kinases 1 and 2 (SP600125) pathways. Furthermore, nuclear factor-κB role in insulin-induced HOX-1 up-regulation was verified, with ERK1/2, Src, and c-Jun terminal kinases 1 and 2 mediating p65-nuclear factor-κB subunit phosphorylation. Overall, our novel findings highlight for the first time the transduction mechanisms mediating HOX-1 induction in insulin-treated C2 myoblasts. This effect was established to be cell type specific because insulin failed to promote HOX-1 expression in HepG2 hepatoma cells. Deciphering the signaling networks involved in insulin-stimulated HOX-1 up-regulation is of prominent significance because it may potentially contribute to elucidation of the mechanisms involved in associated metabolic pathologies.
Collapse
Affiliation(s)
- Ioanna-Katerina Aggeli
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, Ilissia, Athens 157 84 Greece
| | | | | | | |
Collapse
|
15
|
Aggeli IK, Kefaloyianni E, Beis I, Gaitanaki C. HOX-1 and COX-2: Two differentially regulated key mediators of skeletal myoblast tolerance under oxidative stress. Free Radic Res 2010; 44:679-93. [DOI: 10.3109/10715761003742985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Robinson SR, Dang TN, Dringen R, Bishop GM. Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke. Redox Rep 2010; 14:228-35. [PMID: 20003707 DOI: 10.1179/135100009x12525712409931] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hemorrhagic stroke is a common cause of permanent brain damage, with a significant amount of the damage occurring in the weeks following a stroke. This secondary damage is partly due to the toxic effects of hemin, a breakdown product of hemoglobin. The serum proteins hemopexin and albumin can bind hemin, but these natural defenses are insufficient to cope with the extremely high amounts of hemin (10 mM) that can potentially be liberated from hemoglobin in a hematoma. The present review discusses how hemin gets into brain cells, and examines the multiple routes through which hemin can be toxic. These include the release of redox-active iron, the depletion of cellular stores of NADPH and glutathione, the production of superoxide and hydroxyl radicals, and the peroxidation of membrane lipids. Important gaps are revealed in contemporary knowledge about the metabolism of hemin by brain cells, particularly regarding how hemin interacts with hydrogen peroxide. Strategies currently being developed for the reduction of hemin toxicity after hemorrhagic stroke include chelation therapy, antioxidant therapy and the modulation of heme oxygenase activity. Future strategies may be directed at preventing the uptake of hemin into brain cells to limit the opportunity for toxic interactions.
Collapse
Affiliation(s)
- Stephen R Robinson
- School of Psychology & Psychiatry, Monash University, Victoria, Australia.
| | | | | | | |
Collapse
|
17
|
Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination. Toxicol Appl Pharmacol 2009; 237:357-65. [DOI: 10.1016/j.taap.2009.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/24/2009] [Accepted: 04/10/2009] [Indexed: 11/22/2022]
|
18
|
Cobalt protoporphyrin inhibition of lipopolysaccharide or lipoteichoic acid-induced nitric oxide production via blocking c-Jun N-terminal kinase activation and nitric oxide enzyme activity. Chem Biol Interact 2009; 180:202-10. [PMID: 19497418 DOI: 10.1016/j.cbi.2009.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 12/26/2008] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
In the present study, low doses (0.5, 1, and 2 microM) of cobalt protoporphyrin (CoPP), but not ferric protoporphyrin (FePP) or tin protoporphyrin (SnPP), significantly inhibited lipopolysaccharide (LPS) or lipoteichoic acid (LTA)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages under serum-free conditions. IC(50) values of CoPP inhibition of NO and iNOS protein individually induced by LPS and LTA were around 0.25 and 1.7 microM, respectively. This suggests that CoPP is more sensitive at inhibiting NO production than iNOS protein in response to separate LPS and LTA stimulation. NO inhibition and HO-1 induction by CoPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). Decreasing iNOS/NO production and increasing HO-1 protein by CoPP were observed with CoPP pretreatment, CoPP co-treatment, and CoPP post-treatment with LPS and LTA stimulation. LPS- and LTA-induced NOS/NO productions were significantly suppressed by the JNK inhibitor, SP600125, but not by the ERK inhibitor, PD98059, through a reduction in JNK protein phosphorylation. Transfection of a dominant negative JNK plasmid inhibited LPS- and LTA-induced iNOS/NO production and JNK protein phosphorylation, suggesting that JNK activation is involved in LPS- and LTA-induced iNOS/NO production. Additionally, CoPP inhibition of LPS- and LTA-induced JNK, but not ERK, protein phosphorylation was identified in RAW264.7 cells. Furthermore, CoPP significantly reduced NO production in a cell-mediated, but not cell-free, iNOS enzyme activity assay accompanied by HO-1 induction. However, attenuation of HO-1 protein stimulated by CoPP via transfection of HO-1 siRNA did not affect NO's inhibition of CoPP against LPS stimulation. CoPP effectively suppressing LPS- and LTA-induced iNOS/NO production through blocking JNK activation and iNOS enzyme activity via a HO-1 independent manner is first demonstrated herein.
Collapse
|
19
|
Sartori A, Garay-Malpartida HM, Forni MF, Schumacher RI, Dutra F, Sogayar MC, Bechara EJH. Aminoacetone, a putative endogenous source of methylglyoxal, causes oxidative stress and death to insulin-producing RINm5f cells. Chem Res Toxicol 2008; 21:1841-50. [PMID: 18729331 DOI: 10.1021/tx8001753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4(+) ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O2(*-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 microM) and Fe(3+) ion (100 microM) addition to the cell cultures had no effect, whereas Cu(2+) (5.0-100 microM) significantly increased cell death. Supplementation of the AA- and Cu(2+)-containing culture medium with antioxidants, such as catalase (5.0 microM), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu(2+) ions (10-50 microM) relative to control cultures. This may imply higher activity of antioxidant enzymes in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) plus Cu(2+) (100 microM) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.
Collapse
Affiliation(s)
- Adriano Sartori
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|