1
|
Li YS, Fujisawa K, Kawai K. Diurnal and daily fluctuations in levels of the urinary oxidative stress marker 8-hydroxyguanosine in spot urine samples. Genes Environ 2025; 47:1. [PMID: 39844253 PMCID: PMC11752967 DOI: 10.1186/s41021-025-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Urinary 8-hydroxyguanosine (8-OHGuo) levels serve as a biomarker for oxidative stress and hydroxyl radical-induced RNA damage. Evaluating the diurnal and daily fluctuations in urinary 8-OHGuo excretion levels is essential for understanding its implications. However, research in this area remains limited. In this study, we aim to investigate the diurnal and daily fluctuations in 8-OHGuo levels as well as the factors that influence these variations, using spot urine samples. METHODS Urine samples were collected from seven healthy participants during each urination from the time of awakening until 24:00 h to evaluate diurnal variations. To assess daily fluctuations, urine samples were collected from 18 healthy participants at the time of awakening for 23 consecutive days. The urinary 8-OHGuo levels were measured using an HPLC-ECD method. RESULTS No significant variations were observed in the diurnal levels of urinary 8-OHGuo among non-smokers. Conversely, the daily variation of 8-OHGuo in the urine of the smoker was significant, with a coefficient of variation of 18.71%. Each individual maintained a characteristic value despite some diurnal fluctuations. Furthermore, the daily levels of 8-OHGuo exhibited a range of variations influenced by lifestyle factors, including mental state, sleep duration, smoking, menstrual cycle, and dietary habits. CONCLUSION As a specific marker of RNA oxidation, 8-OHGuo provides unique insights distinct from those provided by the widely used DNA oxidation marker 8-hydroxydeoxyguanosine as an indicator of oxidative stress. Urinary 8-OHGuo could serve as a valuable biomarker for managing and preventing oxidative stress-related diseases, provided that the specific range of daily variations is established. The high daily variation in urinary 8-OHGuo levels necessitates the use of multiple samples to accurately determine individual levels. However, further research with large sample sizes will help to validate these findings.
Collapse
Affiliation(s)
- Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
- Center for Stress-Related Disease Control and Prevention, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Koichi Fujisawa
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
2
|
Kaur J, Mojumdar A. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Int J Neurosci 2023; 133:307-321. [PMID: 33789065 DOI: 10.1080/00207454.2021.1912040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite substantial development in medical treatment strategies scientists are struggling to find a cure against spinal cord injury (SCI) which causes long term disability and paralysis. The prime rationale behind it is the enlargement of primary lesion due to an initial trauma to the spinal cord which spreads to the neighbouring spinal tissues It begins from the time of traumatic event happened and extends to hours and even days. It further causes series of biological and functional alterations such as inflammation, excitotoxicity and ischemia, and promotes secondary lesion to the cord which worsens the life of individuals affected by SCI. Oxidative DNA damage is a stern consequence of oxidative stress linked with secondary injury causes oxidative base alterations and strand breaks, which provokes cell death in neurons. It is implausible to stop primary damage however it is credible to halt the secondary lesion and improve the quality of the patient's life to some extent. Therefore it is crucial to understand the hidden perspectives of cell and molecular biology affecting the pathophysiology of SCI. Thus the focus of the review is to connect the missing links and shed light on the oxidative DNA damages and the functional repair mechanisms, as a consequence of the injury in neurons. The review will also probe the significance of neuroprotective strategies in the present scenario. HIGHLIGHTSSpinal cord injury, a pernicious condition, causes excitotoxicity and ischemia, ultimately leading to cell death.Oxidative DNA damage is a consequence of oxidative stress linked with secondary injury, provoking cell death in neurons.Base excision repair (BER) is one of the major repair pathways that plays a crucial role in repairing oxidative DNA damages.Neuroprotective therapies curbing SCI and boosting BER include the usage of pharmacological drugs and other approaches.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Aditya Mojumdar
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Vodicka P, Vodenkova S, Horak J, Opattova A, Tomasova K, Vymetalkova V, Stetina R, Hemminki K, Vodickova L. An investigation of DNA damage and DNA repair in chemical carcinogenesis triggered by small-molecule xenobiotics and in cancer: Thirty years with the comet assay. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503564. [PMID: 36669813 DOI: 10.1016/j.mrgentox.2022.503564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
In the present review we addressed the determination of DNA damage induced by small-molecule carcinogens, considered their persistence in DNA and mutagenicity in in vitro and in vivo systems over a period of 30 years. The review spans from the investigation of the role of DNA damage in the cascade of chemical carcinogenesis. In the nineties, this concept evolved into the biomonitoring studies comprising multiple biomarkers that not only reflected DNA/chromosomal damage, but also the potential of the organism for biotransformation/elimination of various xenobiotics. Since first years of the new millennium, dynamic system of DNA repair and host susceptibility factors started to appear in studies and a considerable knowledge has been accumulated on carcinogens and their role in carcinogenesis. It was understood that the final biological links bridging the arising DNA damage and cancer onset remain to be elucidated. In further years the community of scientists learnt that cancer is a multifactorial disease evolving over several decades of individual´s life. Moreover, DNA damage and DNA repair are inseparable players also in treatment of malignant diseases, but affect substantially other processes, such as degeneration. Functional monitoring of DNA repair pathways and DNA damage response may cast some light on above aspects. Very little is currently known about the relationship between telomere homeostasis and DNA damage formation and repair. DNA damage/repair in genomic and mitochondrial DNA and crosstalk between these two entities emerge as a new interesting topic.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Rudolf Stetina
- Department of Research and Development, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Kari Hemminki
- Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 691 20 Heidelberg, Germany
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic.
| |
Collapse
|
4
|
Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Boccuni F, Ferrante R, Tombolini F, Maiello R, Chiarella P, Buresti G, Del Frate V, Poli D, Andreoli R, Di Cristo L, Sabella S, Iavicoli S. A follow-up study on workers involved in the graphene production process after the introduction of exposure mitigation measures: evaluation of genotoxic and oxidative effects. Nanotoxicology 2022; 16:776-790. [PMID: 36427224 DOI: 10.1080/17435390.2022.2149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Fabio Boccuni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Riccardo Ferrante
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Francesca Tombolini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Valentina Del Frate
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Diana Poli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, Laboratory of Industrial Toxicology, University of Parma, Parma, Italy
| | | | | | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| |
Collapse
|
5
|
Titov RA, Minina VI, Torgunakova AV, Buslaev VY, Voronina EN, Prosekov AY, Titov VA, Glushkov AN. Studying the Role of DNA Repair Gene Polymorphism in Formation of Predisposition to Lung Cancer Development in Women. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sisto R, Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Maiello R, Paci E, Pigini D, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Capone P, Carbonari D, Balzani B, Chiarella P. Direct and Oxidative DNA Damage in a Group of Painters Exposed to VOCs: Dose - Response Relationship. Front Public Health 2020; 8:445. [PMID: 32974263 PMCID: PMC7469480 DOI: 10.3389/fpubh.2020.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Volatile organic compounds (VOCs) are present in several working activities. This work is aimed at comparing oxidative stress and DNA damage biomarkers to specific VOCs in the occupational exposure of painters. Dose-response relationships between biomarkers of oxidative stress and of dose were studied. Unmetabolized VOCs and their urinary metabolites were analyzed. Urinary Methylhyppuric acids (MHIPPs, xylenes metabolite), Phenylglyoxylic and Mandelic acid (PGA, MA ethylbenzene metabolites), S-Benzylmercapturic acid (SBMA, toluene metabolite), and S-Phenylmercapturic acid (SPMA, benzene metabolite) were quantified at the end of work-shift. Oxidative stress was determined by: urinary excretion of 8-oxodGuo, 8-oxoGua and 8-oxoGuo and direct/oxidative DNA damage in blood by Fpg-Comet assay. Multivariate linear regression models were used to assess statistical significance of the association between dose and effect biomarkers. The regressions were studied with and without the effect of hOGG1 and XRCC1 gene polymorphisms. Statistically significant associations were found between MHIPPs and both 8-oxoGuo and oxidative DNA damage effect biomarkers measured with the Comet assay. Oxidative DNA damage results significantly associated with airborne xylenes and toluene, whilst 8-oxodGuo was significantly related to urinary xylenes and toluene. Direct DNA damage was significantly associated to SBMA. XRCC1 wild-type gene polymorphism was significantly associated with lower oxidative and total DNA damage with respect to heterozygous and mutant genotypes. The interpretation of the results requires some caution, as the different VOCs are all simultaneously present in the mixture and correlated among them.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Nunziata L'Episcopo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Pasquale Capone
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Damiano Carbonari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Barbara Balzani
- Department of Prevention, Prevention and Safety at Workplace, ASUR Marche, Ancona, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| |
Collapse
|
7
|
Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience 2020; 43:487-505. [PMID: 32529593 PMCID: PMC8110629 DOI: 10.1007/s11357-020-00209-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid (RNA) molecules can be easily attacked by reactive oxygen species (ROS), which are produced during normal cellular metabolism and under various oxidative stress conditions. Numerous findings report that the amount of cellular 8-oxoG, the most abundant RNA damage biomarker, is a promising target for the sensitive measurement of oxidative stress and aging-associated diseases, including neuropsychiatric disorders. Most importantly, available data suggest that RNA oxidation has important implications for various signaling pathways and gene expression regulation in aging-related diseases, highlighting the necessity of using combinations of RNA oxidation adducts in both experimental studies and clinical trials. In this review, we primarily describe evidence for the effect of oxidative stress on RNA integrity modulation and possible quality control systems. Additionally, we discuss the profiles and clinical implications of RNA oxidation products that have been under intensive investigation in several aging-associated medical disorders.
Collapse
|
8
|
Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21072473. [PMID: 32252452 PMCID: PMC7177219 DOI: 10.3390/ijms21072473] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Collapse
|
9
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
10
|
Effect of Benzene Exposure on the Urinary Biomarkers of Nucleic Acid Oxidation in Two Cohorts of Gasoline Pump Attendants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16010129. [PMID: 30621294 PMCID: PMC6339131 DOI: 10.3390/ijerph16010129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
Abstract
(1) Background: The oxidized guanine derivatives excreted into urine, products of DNA and RNA oxidation and repair, are used as biomarkers of oxidative damage in humans. This study aims to evaluate oxidative damage in gasoline pump attendants occupationally exposed to benzene. Benzene is contained in the gasoline but it is also produced from traffic and from smoking. (2) Methods: Twenty-nine gasoline pump attendants from two major cities of Saudi Arabia and 102 from Italy were studied for urinary 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and S-phenyl-mercapturic acid (SPMA) for benzene exposure and urinary cotinine for smoking status assessment by liquid chromatography-tandem mass spectrometry. Airborne benzene was also assessed in the Italian group by gas-chromatography with flame ionization detector (GC-FID). (3) Results: The results suggest that high levels of benzene exposure can cause an accumulation of SPMA and bring about the formation of the oxidation biomarkers studied to saturation. At low exposure levels, SPMA and oxidation biomarker levels were correlated among them and were associated with the smoking habit. (4) Conclusions: The study confirms the association between benzene exposure and the excretion of nucleic acid oxidation biomarkers and enhances the importance of measuring the smoking habit, as it can significantly influence oxidative damage, especially when the exposure levels are low.
Collapse
|
11
|
Cavallo D, Tranfo G, Ursini CL, Fresegna AM, Ciervo A, Maiello R, Paci E, Pigini D, Gherardi M, Gatto MP, Buresti G, Iavicoli S. Biomarkers of early genotoxicity and oxidative stress for occupational risk assessment of exposure to styrene in the fibreglass reinforced plastic industry. Toxicol Lett 2018; 298:53-59. [PMID: 29898417 DOI: 10.1016/j.toxlet.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022]
Abstract
This study aimed to identify sensitive and not-invasive biomarkers of early genotoxic/oxidative effect for exposure to styrene in the fibreglass reinforced plastic manufacture. We studied 11 workers of a plastic manufacture using open molding process (A), 16 workers of a manufacture using closed process (B) and 12 controls. We evaluated geno/cytotoxic effects on buccal cells by Buccal Micronucleus Cytome (BMCyt) assay and genotoxic/oxidative effects on lymphocytes by Fpg-comet test. On A workers we also evaluated urinary 8oxoGua, 8oxodGuo and 8oxoGuo to investigate oxidative stress. Personal inhalation exposure to styrene was monitored by passive air sampling and GC/MS. Biological monitoring included urinary metabolites mandelic acid (MA) and phenylglyoxylic acid (PGA). The findings show higher styrene exposure, urinary MA + PGA levels and micronucleus frequency in manufacture A. Higher buccal karyolytic cell frequency vs controls were found in both exposed populations. We found in exposed workers, no induction of direct DNA damage but oxidative DNA damage. Fpg-comet assay and urinary oxidized guanine seem to be sensitive biomarkers of oxidative stress and BMCyt assay a good-not invasive biomarker of cyto-genotoxicity at target organ. The study, although limited by the small number of studied subjects, shows the usefulness of used biomarkers in risk assessment of styrene-exposed workers.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Maria Pia Gatto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers' Compensation Authority, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| |
Collapse
|
12
|
Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochem Soc Trans 2017; 45:1053-1066. [DOI: 10.1042/bst20160433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Unlike DNA, oxidative damage to RNA has received little attention presumably due to the assumed transient nature of RNA. However, RNAs including mRNA can persist for several hours to days in certain tissues and are demonstrated to sustain greater oxidative damage than DNA. Because neuronal cells in the brain are continuously exposed to reactive oxygen species due to a high oxygen consumption rate, it is not surprising that neuronal RNA oxidation is observed as a common feature at an early stage in a series of neurodegenerative disorders. A recent study on a well-defined bacterial translation system has revealed that mRNA containing 8-oxo-guanosine (8-oxoGuo) has little effect on fidelity despite the anticipated miscoding. Indeed, 8-oxoGuo-containing mRNA leads to ribosomal stalling with a reduced rate of peptide-bond formation by 3–4 orders of magnitude and is subject to no-go decay, a ribosome-based mRNA surveillance mechanism. Another study demonstrates that transfer RNA oxidation catalyzed by cytochrome c (cyt c) leads to its depurination and cross-linking, which may facilitate cyt c release from mitochondria and subsequently induce apoptosis. Even more importantly, a discovery of oxidized microRNA has been recently reported. The oxidized microRNA causes misrecognizing the target mRNAs and subsequent down-regulation in the protein synthesis. It is noteworthy that oxidative modification to RNA not only interferes with the translational machinery but also with regulatory mechanisms of noncoding RNAs that contribute toward the biological complexity of the mammalian brain. Oxidative RNA damage might be a promising therapeutic target potentially useful for an early intervention of diverse neuropsychiatric disorders.
Collapse
|
13
|
Significant association between decreased ALDH2 activity and increased sensitivity to genotoxic effects in workers occupationally exposed to styrene. Oncotarget 2016; 7:38224-38234. [PMID: 27224914 PMCID: PMC5122384 DOI: 10.18632/oncotarget.9502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/01/2016] [Indexed: 12/15/2022] Open
Abstract
ALDH2 is involved in the metabolism of styrene, a widely used industrial material, but no data are available regarding the influence of this enzyme on the metabolic fate as well as toxic effects of this chemical. In this study, we recruited 329 workers occupationally exposed to styrene and 152 unexposed controls. DNA strand breaks, DNA-base oxidation in leukocytes and urinary 8-hydroxydeoxyguanosine (8-OH-dG) were assayed as biomarkers to measure genotoxic effects. Meanwhile, we examined the genetic polymorphisms, including ALDH2, EXPH1, GSTM1, GSTT1 and CYP2E1, and also analyzed the levels of styrene exposure through detecting urinary styrene metabolites and styrene concentration in air. In terms of DNA damage, the three genotoxic biomarkers were significantly increased in exposed workers as compared with controls. And the styrene-exposed workers with inactive ALDH2 *2 allele were subjected to genotoxicity in a higher degree than those with ALDH2 *1/*1 genotype. Also, lower levels of urinary styrene metabolites (MA + PGA) were observed in styrene-exposed workers carrying ALDH2 *2 allele, suggesting slower metabolism of styrene. The polymorphisms of other enzymes showed less effect. These results suggested that styrene metabolism and styrene-induced genotoxicity could be particularly modified by ALDH2 polymorphisms. The important role of ALDH2 indicated that the accumulation of styrene glycoaldehyde, a possible genotoxic intermediate of styrene, could account for the genotoxicity observed, and should be taken as an increased risk of cancer.
Collapse
|
14
|
Sisto R, Botti T, Cerini L, Sanjust F, Tranfo G, Bonanni RC, Paci E, Pigini D, Moleti A. Oxidative stress biomarkers and otoacoustic emissions in humans exposed to styrene and noise. Int J Audiol 2016; 55:523-31. [PMID: 27146376 DOI: 10.1080/14992027.2016.1177215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Evaluating the correlation between otoacoustic emission levels, styrene exposure, and oxidative stress biomarkers concentration in styrene-exposed subjects, to investigate the role of oxidative stress in outer hair cell damage. DESIGN Distortion product otoacoustic emissions were measured in the exposed workers and in a control group. Separation between the distortion and reflection otoacoustic components was performed by time-frequency-domain filtering. The urinary concentration of the DNA and RNA oxidation products, namely 8-oxo-7,8-dihydroguanine (oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxodGuo), and 8-oxo-7,8-dihydroguanosine (oxoGuo), were evaluated. STUDY SAMPLE Nine subjects exposed to styrene in a fiberglass factory, eight control subjects. The two groups were statistically equivalent in mean age. RESULTS Statistically significant differences were found in the distortion component levels between the exposed and the control group. High levels of the oxidative damage biomarkers were found in the workers exposed to high levels of styrene. Significant negative correlation was found between the otoacoustic emission distortion component levels and the concentration of the oxoGuo biomarker. CONCLUSIONS Exposure-induced damage of the cochlear amplifier is shown in the mid-frequency range, confirming animal experiments, in which hair cells in the cochlear middle turn were damaged. Hearing damage is consistent with the outer hair cell apoptosis pathway associated with oxidative stress.
Collapse
Affiliation(s)
- R Sisto
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - T Botti
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - L Cerini
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - F Sanjust
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - G Tranfo
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - R C Bonanni
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - E Paci
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - D Pigini
- a INAIL Research , Monteporzio Catone (RM) , Italy
| | - A Moleti
- b Physics Department, University of Roma Tor Vergata , Roma (Italy)
| |
Collapse
|
15
|
Bonanni RC, Gatto MP, Paci E, Gordiani A, Gherardi M, Tranfo G. Biomonitoring for Exposure Assessment to Styrene in the Fibreglass Reinforced Plastic Industry: Determinants and Interferents. ANNALS OF OCCUPATIONAL HYGIENE 2015; 59:1000-11. [PMID: 26180262 DOI: 10.1093/annhyg/mev047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/02/2015] [Indexed: 12/30/2022]
Abstract
Fifty-eight workers exposed to styrene were monitored in four fibreglass reinforced plastic industries of Central Italy. The aim of the study was to explore the factors that can influence the levels of styrene exposure biomarkers of the workers and the aspects that might interfere with the exposure assessment measures, such as the co-exposure to acetone. Personal monitoring of professional exposure to airborne styrene and acetone was carried out by Radiello samplers and GC/MS analysis. Biological monitoring was performed by the determination of urinary metabolites, mandelic (MA), and phenylglyoxylic (PGA) acids with HPLC/MS/MS and unmetabolized styrene in saliva and venous blood by HS/GC/MS. The median values of the four sites ranged between 24.1 to 94.0mg m(-3) and 7.3 to 331.1mg g(-1) creatinine for airborne styrene and MA + PGA, respectively. A good linear correlation was found between styrene in air and its urinary metabolites (r = 0.854). The median value for airborne styrene was found to exceed the (Threshold Limit Value - Time Weighted Average) of 85 mg m(-3) in one site for all the workers and in two if only moulders are considered. The multiple linear regression model showed that the determinants of urinary MA + PGA excretion were the type of process, workers' tasks, level of acetone co-exposure, and the use of respiratory protection devices. Data show that the simultaneous exposure to acetone modify the styrene metabolism with a reduction in the levels of (MA + PGA) excreted. A significant linear log-correlation was found between salivary levels of styrene and blood concentration (r = 0.746) sampled at the same t x time.
Collapse
Affiliation(s)
- Rossana Claudia Bonanni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone 00040, Rome, Italy
| | - Maria Pia Gatto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone 00040, Rome, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone 00040, Rome, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone 00040, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone 00040, Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone 00040, Rome, Italy
| |
Collapse
|
16
|
Protano C, Andreoli R, Mutti A, Petti S, Vitali M. Biomarkers of oxidative stress to nucleic acids: background levels and effects of body mass index and life-style factors in an urban paediatric population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 500-501:44-51. [PMID: 25217743 DOI: 10.1016/j.scitotenv.2014.08.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
The aims of the present study were to establish the background levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), 8-oxo-7,8-dihydroguanine (8-oxoGua) among a group of healthy Italian children, and to evaluate the contribution of some potential interfering/confounding factors to the urinary (u) levels of these biomarkers of oxidised guanine derivatives. The levels of 8-oxodGuo, 8-oxoGuo, 8-oxoGua, and u-cotinine in urine samples from 159 healthy children (5-11years) recruited in a cross-sectional study were measured via liquid chromatography-tandem mass spectrometry. Data regarding the anthropometric and life-style characteristics of the participants were obtained from questionnaires. The 5th-95th percentiles of the levels of 8-oxodGuo, 8-oxoGuo, and 8-oxoGua for all children were 2.4-13.9, 3.8-19.9 and 5.4-79.5μg/L and 2.9-12.6, 4.8-15.2, and 5.1-93.4μg/g creatinine, respectively. Significant correlations were found between the level of 8-oxoGuo and that of 8-oxoGua and 8-oxodGuo but not between the level of 8-oxoGua and that of 8-oxodGuo in all children and in both the male and female subgroups. Multiple linear regression analyses revealed the independent effect of the investigated variables on 8-oxodGuo, 8-oxoGuo, and 8-oxoGua. u-Creatinine was the most significant predictor of the urinary excretion of both 8-oxoGuo and 8-oxodGuo, age displayed a significant positive independent effect on the level of 8-oxoGuo, whereas the weight status according to the BMI was negatively associated with the level of 8-oxodGuo. None of the chosen independent variables influenced the levels of 8-oxoGua.
Collapse
Affiliation(s)
- Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, I-43126 Parma, Italy.
| | - Antonio Mutti
- Laboratory of Industrial Toxicology, Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, I-43126 Parma, Italy.
| | - Stefano Petti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
17
|
Göethel G, Brucker N, M. Moro A, F. Charão M, Fracasso R, Barth A, Bubols G, Durgante J, Nascimento S, Baierle M, Saldiva PH, Garcia SC. Evaluation of genotoxicity in workers exposed to benzene and atmospheric pollutants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:61-5. [DOI: 10.1016/j.mrgentox.2014.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 01/20/2023]
|
18
|
Jacob KD, Hooten NN, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 2013; 134:139-57. [PMID: 23428415 PMCID: PMC3664937 DOI: 10.1016/j.mad.2013.02.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 11/20/2022]
Abstract
Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant.
Collapse
Affiliation(s)
- Kimberly D. Jacob
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrzej R. Trzeciak
- Molecular Neurobiology Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
19
|
McHugh MK, Lopez MS, Ho CH, Spitz MR, Etzel CJ, El-Zein RA. Use of the cytokinesis-blocked micronucleus assay to detect gender differences and genetic instability in a lung cancer case-control study. Cancer Epidemiol Biomarkers Prev 2012. [PMID: 23195992 DOI: 10.1158/1055-9965.epi-12-0435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although tobacco exposure is the predominant risk factor for lung cancer, other environmental agents are established lung carcinogens. Measuring the genotoxic effect of environmental exposures remains equivocal, as increases in morbidity and mortality may be attributed to coexposures such as smoking. METHODS We evaluated genetic instability and risk of lung cancer associated with exposure to environmental agents (e.g., exhaust) and smoking among 500 lung cancer cases and 500 controls using the cytokinesis-blocked micronucleus (CBMN) assay. Linear regression was applied to estimate the adjusted means of the CBMN endpoints (micronuclei and nucleoplasmic bridges). Logistic regression analyses were used to estimate lung cancer risk and to control for potential confounding by age, gender, and smoking. RESULTS Cases showed significantly higher levels of micronuclei and nucleoplasmic bridges as compared with controls (mean ± SEM = 3.54 ± 0.04 vs. 1.81 ± 0.04 and mean ± SEM = 4.26 ± 0.03 vs. 0.99 ± 0.03, respectively; P < 0.001) with no differences among participants with or without reported environmental exposure. No differences were observed when stratified by smoking or environmental exposure among cases or controls. A difference in lung cancer risk was observed between nonexposed male and female heavy smokers, although it was not statistically significant (I(2) = 64.9%; P value for Q statistic = 0.09). CONCLUSIONS Our study confirms that the CBMN assay is an accurate predictor of lung cancer and supports the premise that heavy smoking may have an effect on DNA repair capacity and in turn modulate the risk of lung cancer. IMPACT Identifying factors that increase lung cancer risk may lead to more effective prevention measures.
Collapse
Affiliation(s)
- Michelle K McHugh
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
20
|
Mesaros C, Arora JS, Wholer A, Vachani A, Blair IA. 8-Oxo-2'-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic Biol Med 2012; 53:610-7. [PMID: 22613262 PMCID: PMC4283839 DOI: 10.1016/j.freeradbiomed.2012.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022]
Abstract
7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dGuo) is a useful biomarker of oxidative stress. However, its analysis can be challenging because 8-oxo-dGuo must be quantified in the presence of dGuo, without artifactual conversion to 8-oxo-dGuo. Urine is the ideal biological fluid for population studies, because it can be obtained noninvasively and it is less likely that artifactual oxidation of dGuo can occur because of the relatively low amounts that are present compared with hydrolyzed DNA. Stable isotope dilution liquid chromatography-selected reaction monitoring/mass spectrometry (LC-SRM/MS) with 8-oxo-[(15)N(5)]dGuo as internal standard provided the highest possible specificity for 8-oxo-dGuo analysis. Furthermore, artifact formation was determined by addition of [(13)C(10)(15)N(5)]dGuo and monitoring of its conversion to 8-oxo-[(13)C(10)(15)N(5)]dGuo during the analytical procedure. 8-Oxo-dGuo concentrations were normalized for interindividual differences in urine flow by analysis of creatinine using stable isotope dilution LC-SRM/MS. A significant increase in urinary 8-oxo-dGuo was observed in tobacco smokers compared with nonsmokers either using simple urinary concentrations or after normalization for creatinine excretion. The mean levels of 8-oxo-dGuo were 1.65ng/ml and the levels normalized to creatinine were 1.72μg/g creatinine. Therefore, stable isotope dilution LC-SRM/MS analysis of urinary 8-oxo-dGuo complements urinary isoprostane (isoP) analysis for assessing tobacco-smoking-induced oxidative stress. This method will be particularly useful for studies that employ polyunsaturated fatty acids, in which a reduction in arachidonic acid precursor could confound isoP measurements.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Jasbir S. Arora
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Ashley Wholer
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Anil Vachani
- Division of Pulmonary Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Corresponding author: Ian A. Blair, Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, 856 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160. Tel: 215-573-9885. Fax: 215-573-9889.
| |
Collapse
|
21
|
Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotox Res 2012; 22:231-48. [DOI: 10.1007/s12640-012-9331-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/13/2012] [Accepted: 05/17/2012] [Indexed: 12/14/2022]
|
22
|
Poulsen HE, Specht E, Broedbaek K, Henriksen T, Ellervik C, Mandrup-Poulsen T, Tonnesen M, Nielsen PE, Andersen HU, Weimann A. RNA modifications by oxidation: a novel disease mechanism? Free Radic Biol Med 2012; 52:1353-61. [PMID: 22306201 DOI: 10.1016/j.freeradbiomed.2012.01.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 12/28/2022]
Abstract
The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes, but the oxidation results in ribosomal stalling and dysfunction, followed by decreased levels of functional protein as well as the production of truncated proteins that do not undergo proper folding and may result in protein aggregation within the cell. Ribosomal dysfunction may also signal apoptosis by p53-independent pathways. There are very few reports on interventions that reduce RNA oxidation, one interesting observation being a reduction in RNA oxidation by ingestion of raw olive oil. High urinary excretion of 8-oxo-guanosine, a biomarker for RNA oxidation, is highly predictive of death in newly diagnosed type 2 diabetics; this demonstrates the clinical relevance of RNA oxidation. Taken collectively the available data suggest that RNA oxidation is a contributing factor in several diseases such as diabetes, hemochromatosis, heart failure, and β-cell destruction. The mechanism involves free iron and hydrogen peroxide from mitochondrial dysfunction that together lead to RNA oxidation that in turn gives rise to truncated proteins that may cause aggregation. Thus RNA oxidation may well be an important novel contributing mechanism for several diseases.
Collapse
Affiliation(s)
- Henrik E Poulsen
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA. Arch Biochem Biophys 2012; 518:142-50. [DOI: 10.1016/j.abb.2011.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/16/2011] [Accepted: 12/28/2011] [Indexed: 11/19/2022]
|
24
|
Loft S, Svoboda P, Kawai K, Kasai H, Sørensen M, Tjønneland A, Vogel U, Møller P, Overvad K, Raaschou-Nielsen O. Association between 8-oxo-7,8-dihydroguanine excretion and risk of lung cancer in a prospective study. Free Radic Biol Med 2012; 52:167-72. [PMID: 22044660 DOI: 10.1016/j.freeradbiomed.2011.10.439] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/30/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
Oxidative damage to guanine (8-oxoGua) is one of the most abundant lesions induced by oxidative stress and documented mutagenic. 8-Oxoguanine DNA glycosylase 1 (OGG1) removes 8-oxoGua from DNA by excision. The urinary excretion of 8-oxoGua is a biomarker of exposure, reflecting the rate of damage in the steady state. The aim of this study was to investigate urinary 8-oxoGua as a risk factor for lung cancer. In a nested case-cohort design we examined associations between urinary excretion of 8-oxoGua and risk of lung cancer as well as potential interaction with the OGG1 Ser326Cys polymorphism in a population-based cohort of 25,717 men and 27,972 women aged 50-64 years with 3-7 years follow-up. We included 260 cases with lung cancer and a subcohort of 263 individuals matched on sex, age, and smoking duration for comparison. Urine collected at entry was analysed for 8-oxoGua by HPLC with electrochemical detection. There was no significant effect of smoking or OGG1 genotype on the excretion of 8-oxoGua. Overall the incidence rate ratio (IRR) (95% confidence interval) of lung cancer was 1.06 (0.97-1.15) per doubling of 8-oxoGua excretion. The association between lung cancer risk and 8-oxoGua excretion was significant among men [IRR: 1.17 (1.03-1.31)], never-smokers [IRR: 9.94 (1.04-94.7)], and former smokers [IRR: 1.19 (1.07-1.33)]. There was no significant interaction with the OGG1 genotype, although the IRR was 1.14 (0.98-1.34) among subjects homozygous for Cys326. The association between urinary 8-oxoGua excretion and lung cancer risk among former and never-smokers suggests that oxidative stress with damage to DNA is important in this group.
Collapse
Affiliation(s)
- Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jensen A, Løhr M, Eriksen L, Grønbæk M, Dorry E, Loft S, Møller P. Influence of the OGG1 Ser326Cys polymorphism on oxidatively damaged DNA and repair activity. Free Radic Biol Med 2012; 52:118-25. [PMID: 22019439 DOI: 10.1016/j.freeradbiomed.2011.09.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
Abstract
Oxidatively damaged DNA base lesions are considered to be mainly repaired by 8-oxoguanine DNA glycosylase (OGG1) mediated pathways. We investigated the effect of the OGG1 Ser326Cys polymorphism on the level and repair of oxidatively damaged DNA in mononuclear blood cells (MNBC) by means of the comet assay. We collected blood samples from 1,019 healthy subjects and genotyped for the OGG1 Ser326Cys polymorphism. We found 49 subjects homozygous for the variant genotype (Cys/Cys) and selected same numbers of age-matched subjects with the heterozygous (Ser/Cys) and homozygous wild-type genotype (Ser/Ser). Carriers of the Cys/Cys genotype had higher levels of formamidopyrimidine DNA glycosylase (FPG) sensitive sites in MNBC (0.31 ± 0.03 lesions/10(6)bp) compared to Ser/Ser (0.19 ± 0.02 lesions/10(6)bp, P<0.01). The level of hOGG1 sensitive sites in MNBC from the Ser326Cys carriers (0.19 ± 0.16 lesions/10(6) bp) was also higher compared to the Ser/Ser genotype (0.11 ± 0.09 lesions/10(6) bp, P<0.05). Still, there was no genotype-related difference in DNA repair incision activity of MNBC extracts on nucleoids with oxidatively damaged DNA induced by Ro19-8022/white light (P=0.20). In addition, there were no differences in the expression of OGG1 (P=0.69), ERCC1 (P=0.62), MUTYH (P=0.85), NEIL1 (P=0.17) or NUDT1 (P=0.48) in whole blood. Our results indicate that the OGG1 Ser326Cys polymorphism has limited influence on the DNA repair incisions by extracts of MNBC, whereas the apparent increased risk of cancer in subjects with the Cys/Cys genotype may be because of higher levels of oxidatively damaged DNA.
Collapse
Affiliation(s)
- Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
26
|
Krewski D, Westphal M, Al-Zoughool M, Croteau MC, Andersen ME. New Directions in Toxicity Testing. Annu Rev Public Health 2011; 32:161-78. [DOI: 10.1146/annurev-publhealth-031210-101153] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Krewski
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Margit Westphal
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Mustafa Al-Zoughool
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Maxine C. Croteau
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Melvin E. Andersen
- Program in Chemical Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA;
| |
Collapse
|
27
|
Andreoli R, Mutti A, Goldoni M, Manini P, Apostoli P, De Palma G. Reference ranges of urinary biomarkers of oxidized guanine in (2'-deoxy)ribonucleotides and nucleic acids. Free Radic Biol Med 2011; 50:254-61. [PMID: 21075202 DOI: 10.1016/j.freeradbiomed.2010.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 02/03/2023]
Abstract
This study was aimed at defining the reference ranges for biomarkers of oxidized guanine in (2'-deoxy)ribonucleotides and nucleic acids from a large Italian sample. We recruited 300 healthy subjects (150 males; mean age 44.1±13.6years; 26% smokers) without any known exposure to occupational oxidizing agents. They were asked to provide a spot urine sample, on which the following markers were determined by liquid chromatography-tandem mass spectrometry: 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), 8-oxo-7,8-dihydroguanine (8-oxoGua), and cotinine. The reference ranges, estimated as the 5th-95th percentiles of creatinine-normalized values (pmol/μmol(creat)) were 0.7-4.2, 0.9-4.7, and 5.6-120.7 for 8-oxodGuo, 8-oxoGuo, and 8-oxoGua, respectively. Oxidation biomarkers were correlated with one another (p<0.005) and with urinary creatinine (p<0.0001). Males excreted significantly higher concentrations of 8-oxoGua than females (p<0.0001). 8-OxoGua and 8-oxoGuo showed a positive association with age (p<0.001), also after stratification by gender. Multiple linear regression models including urinary creatinine concentration, age, and smoking habit as independent variables showed a significant effect of age, but not of smoking, on the levels of 8-oxoGuo in males (p<0.0001) and of both 8-oxoGuo and 8-oxoGua in females (p<0.0001). A preliminary assessment in a small group (n=25) of patients affected by advanced non-small-cell lung cancer and receiving platinum-based chemotherapy showed significantly higher values of both 8-oxoGuo and 8-oxodGuo (p<0.0001 for both) compared to the referent population.
Collapse
Affiliation(s)
- Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology, and Health Sciences, ISPESL-National Institute for Occupational Safety and Prevention, Research Center, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Hanova M, Stetina R, Vodickova L, Vaclavikova R, Hlavac P, Smerhovsky Z, Naccarati A, Polakova V, Soucek P, Kuricova M, Manini P, Kumar R, Hemminki K, Vodicka P. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicol Appl Pharmacol 2010; 248:194-200. [DOI: 10.1016/j.taap.2010.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/09/2010] [Accepted: 07/29/2010] [Indexed: 11/17/2022]
|
29
|
Millen AL, Manderville RA, Wetmore SD. Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts. J Phys Chem B 2010; 114:4373-82. [DOI: 10.1021/jp911993f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
30
|
Andersen ME, Al-Zoughool M, Croteau M, Westphal M, Krewski D. The future of toxicity testing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:163-196. [PMID: 20574896 DOI: 10.1080/10937404.2010.483933] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In 2007, the U.S. National Research Council (NRC) released a report, "Toxicity Testing in the 21st Century: A Vision and a Strategy," that proposes a paradigm shift for toxicity testing of environmental agents. The vision is based on the notion that exposure to environmental agents leads to adverse health outcomes through the perturbation of toxicity pathways that are operative in humans. Implementation of the NRC vision will involve a fundamental change in the assessment of toxicity of environmental agents, moving away from adverse health outcomes observed in experimental animals to the identification of critical perturbations of toxicity pathways. Pathway perturbations will be identified using in vitro assays and quantified for dose response using methods in computational toxicology and other recent scientific advances in basic biology. Implementation of the NRC vision will require a major research effort, not unlike that required to successfully map the human genome, extending over 10 to 20 years, involving the broad scientific community to map important toxicity pathways operative in humans. This article provides an overview of the scientific tools and technologies that will form the core of the NRC vision for toxicity testing. Of particular importance will be the development of rapidly performed in vitro screening assays using human cells and cell lines or human tissue surrogates to efficiently identify environmental agents producing critical pathway perturbations. In addition to the overview of the NRC vision, this study documents the reaction by a number of stakeholder groups since 2007, including the scientific, risk assessment, regulatory, and animal welfare communities.
Collapse
Affiliation(s)
- Melvin E Andersen
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
31
|
Manini P, De Palma G, Andreoli R, Mozzoni P, Poli D, Goldoni M, Petyx M, Apostoli P, Mutti A. Occupational exposure to low levels of benzene: Biomarkers of exposure and nucleic acid oxidation and their modulation by polymorphic xenobiotic metabolizing enzymes. Toxicol Lett 2010; 193:229-35. [PMID: 20100551 DOI: 10.1016/j.toxlet.2010.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/17/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
This study investigated nucleic acid oxidation associated with exposure to benzene at low levels in 239 workers recruited among traffic policemen, taxi drivers and gasoline pump attendants of the city of Parma (Italy). Biomarkers of exposure, namely urinary t,t-muconic acid (t,t-MA) and S-phenylmercapturic acid (S-PMA), urinary cotinine, and urinary biomarkers of nucleic acid oxidation, namely 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydroguanine (8-oxoGua) were determined by liquid chromatography-tandem mass spectrometry. Relevant polymorphisms of NAD(P)H:quinone oxidoreductase (NQO1), glutathione S-transferases M1-1 (GSTM1), T1-1 (GSTT1), and A1 (GSTA1) were characterized by polymerase chain reaction-based methods in a subgroup of subjects. Biomarkers of nucleic acid oxidation were correlated with each other (r> or =0.32, p<0.0001) and with exposure biomarkers (r> or =0.28, p<0.0001). Multiple linear regression models including age, sex and smoking habits as independent variables demonstrated that benzene exposure is associated with oxidation damage to nucleic acid, particularly to RNA (p<0.0001) and is modulated by the NQO1 polymorphism. The study confirmed a significant modulating effect of GSTM1 (p=0.010), GSTT1 (p=0.023) and GSTA1 (p=0.048) polymorphisms on S-PMA excretion, with a significant interaction between GSTM1 and both GSTT1 and GSTA1 (p=0.006 and p=0.037, respectively).
Collapse
Affiliation(s)
- Paola Manini
- Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Andreoli R, Manini P, Palma GD, Alinovi R, Goldoni M, Niessen WM, Mutti A. Quantitative determination of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine, 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and their non-oxidized forms: daily concentration profile in healthy volunteers. Biomarkers 2009; 15:221-31. [DOI: 10.3109/13547500903434501] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|