1
|
Hu H, Yu Q, Zheng Y, Cui H, Huang X, Zhang K. Forsythoside A protects against Zearalenone-induced cell damage in chicken embryonic fibroblasts via mitigation of endoplasmic reticulum stress. Vet Res Commun 2024; 48:1659-1670. [PMID: 38467911 DOI: 10.1007/s11259-024-10350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin that exerts its toxic effects through various damage mechanisms such as oxidative stress, endoplasmic reticulum stress (ERS), mitochondrial damage, cell cycle arrest, and apoptosis. At present, there are few studies on drugs that can rescue ZEA-induced chicken embryonic fibroblasts damage. Forsythoside A (FA) is one of effective ingredients of traditional Chinese medicine that plays a role in various biological functions, but its antitoxin research has not been investigated so far. In this study, in vitro experiments were carried out. Chicken embryo fibroblast (DF-1) cells was used as the research object to select the appropriate treatment concentration of ZEA and examined reactive oxygen species (ROS), mitochondrial membrane potential, ERS and apoptosis to investigate the effects and mechanisms of FA in alleviating ZEA-induced cytotoxicity in DF-1 cells. Our results showed that ZEA induced ERS and activated the unfolded protein response (UPR) leading to apoptosis, an apoptotic pathway characterized by overproduction of Lactate dehydrogenase (LDH), Caspase-3, and ROS and loss of mitochondrial membrane potential. We also demonstrated that FA help to prevent ERS and attenuated ZEA-induced apoptosis in DF-1 cells by reducing the level of ROS, downregulating GRP78, PERK, ATF4, ATF6, JNK, IRE1, ASK1, CHOP, BAX expression, and up-regulating Bcl-2 expression. Our results provide a basis for an in-depth study of the mechanism of toxic effects of ZEA on chicken cells and the means of detoxification, which has implications for the treatment of relevant avian diseases.
Collapse
Affiliation(s)
- Hui Hu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Zheng
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongjie Cui
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohong Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaizhao Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Park SH, Moon Y. Enterocyte-Based Bioassay via Quantitative Combination of Proinflammatory Sentinels Specific to 8-keto-trichothecenes. Front Immunol 2020; 11:1530. [PMID: 32765531 PMCID: PMC7378738 DOI: 10.3389/fimmu.2020.01530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Type B 8-keto-trichothecenes are muco-active mycotoxins that exist as inevitable contaminants in cereal-based foodstuffs. Gut-associated inflammation is an early frontline response during human and animal exposure to these mycotoxins. Despite various tools for chemical identification, optimized biomonitoring of sentinel response-associated biomarkers is required to assess the specific proinflammatory actions of 8-keto-trichothecenes in the gut epithelial barrier. In the present study, intoxication with 8-keto-trichothecenes in human intestinal epithelial cells was found to trigger early response gene 1 product (EGR-1) that plays crucial roles in proinflammatory chemokine induction. In contrast, epithelial exposure to 8-keto-trichothecenes resulted in downregulated expression of nuclear factor NF-kappa-B p65 protein, a key transcription factor, during general inflammatory responses in the gut. Based on the early molecular patterns of expression, the inflammation-inducing activity of 8-keto-trichothecenes was quantified using intestinal epithelial cells with dual reporters for EGR-1 and p65 proteins. EGR-1-responsive elements were linked to luciferase reporter while p65 promoter was bound to secretory alkaline phosphatase (SEAP) reporter. In response to conventional inflammagens such as endotoxins and cytokines such as TNF-α, both luciferase and SEAP activity were elevated in a dose-dependent manner. However, as expected from the mechanistic evaluation, 8-keto-trichothecene-exposed dual reporters of luciferase and SEAP displayed contrasting expression patterns. Furthermore, 8-keto-trichothecene-elevated EGR-1-responsive luciferase activity was improved by deficiency of PSMA3, an α-type subunit of the 20S proteasome core complex for ubiquitin-dependent EGR-1 degradation. This molecular event-based dual biomonitoring in epithelial cells is a promising supplementary tool for detecting typical molecular inflammatory pathways in response to 8-keto-trichothecenes in the food matrix.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan, South Korea.,Biomedical Research Institute, Pusan National University, Yangsan, South Korea
| |
Collapse
|
3
|
Jiang S, Lin Y, Yao H, Yang C, Zhang L, Luo B, Lei Z, Cao L, Lin N, Liu X, Lin Z, He C. The role of unfolded protein response and ER-phagy in quantum dots-induced nephrotoxicity: an in vitro and in vivo study. Arch Toxicol 2018; 92:1421-1434. [DOI: 10.1007/s00204-018-2169-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
|
4
|
Kim J, Park SH, Do KH, Kim D, Moon Y. Interference with mutagenic aflatoxin B1-induced checkpoints through antagonistic action of ochratoxin A in intestinal cancer cells: a molecular explanation on potential risk of crosstalk between carcinogens. Oncotarget 2018; 7:39627-39639. [PMID: 27119350 PMCID: PMC5129958 DOI: 10.18632/oncotarget.8914] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Foodborne aflatoxin B1 (AFB1) and ochratoxin A (OTA) cause genotoxic injury and subsequent tumor formation. As a biomarker of oncogenic stimulation by genotoxic mycotoxins, p53-triggered Mdm2 was assessed in intestinal cancer cells. AFB1 increased Mdm2 reporter expression in a dose-dependent manner. However, this was strongly antagonized by OTA treatment. As a positive transcription factor of Mdm2 expression, p53 levels were also increased by AFB1 alone and reduced by OTA. With marginal cell death responses, AFB1 induced p53-mediated S phase arrest and cell cycle-regulating target genes, which was completely suppressed by OTA. Although enterocyte-dominant CYP3A5 counteracted AFB1-induced DNA damage, expression of CYP3A5 was decreased by OTA or AFB1. Instead, OTA enhanced expression of another metabolic inactivating enzyme CYP3A4, attenuation of formation of AFB1-DNA adduct and p53-mediated cell cycle checking responses to the mutagens. Finally, the growth of intestinal cancer cells exposed to the mycotoxin mixture significantly exceeded the expected growth calculated from that of cells treated with each mycotoxin. Although AFB1-induced mutagen formation was decreased by OTA, interference with checkpoints through antagonistic action of OTA may contribute to the survival of tumor cells with deleterious mutations by genotoxic mycotoxins, potently increasing the risk of carcinogenesis.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Dongwook Kim
- National Institute of Animal Science, RDA, Wanju, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan, South Korea
| |
Collapse
|
5
|
Salah A, Bouaziz C, Prola A, Pires Da Silva J, Bacha H, Abid-Essefi S, Lemaire C. Citrinin induces apoptosis in human HCT116 colon cancer cells through endoplasmic reticulum stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1230-1241. [PMID: 29165056 DOI: 10.1080/15287394.2017.1359127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The mycotoxin citrinin (CTN) is a natural contaminant of various human foods that may produce serious adverse health problems. Several studies demonstrated that citrinin exerts cytotoxic and genotoxic effects in both in vivo and in vitro systems. However, the precise mechanisms of action (MOA), particularly in intestinal cells remain unclear. The aim of the present study was to examine the precise MOA of citrinin in vitro. Data demonstrated that CTN significantly decreased the number of viable human intestinal HCT116 cells and induced apoptotic events including (1) decrease in ΔѰm indicative of mitochondrial membrane permeabilization, (2) activation of caspase 3, (3) elevated production of reactive oxygen species (ROS) and (4) relative persistence of plasma membrane integrity. Further, the genetic deficiency of the pro-apoptotic protein Bax protected cells against CTN-induced apoptosis, indicating that Bax is required for CTN-mediated toxicity. It was also found that CTN triggered endoplasmic reticulum (ER) stress and activated different arms of the unfolded protein response (UPR) as demonstrated by increase in expression of GRP78 (glucose-regulated protein-78), GRP94 (glucose-regulated protein-94), GADD34 (growth arrest and DNA damage-inducible protein-34), the protein disulfide isomerase associated 6 (PDIA6), CHOP (C/EBP-homologous protein) and the splicing of XBP1 (X-Box Binding Protein 1). Pretreatment of cells with the chemical chaperone 4-phenylbutyrate (PBA), known to alleviate ER stress, prevented significantly the apoptotic process triggered by CTN. Taken together, these results suggest that CTN exerts its cytotoxic effects in HCT116 cells by inducing apoptosis, at least in part, through induction of ER stress.
Collapse
Affiliation(s)
- Amal Salah
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
- b Faculty of Sciences of Bizerte, Carthage University, Bizerte , Tunisia
| | - Chayma Bouaziz
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
| | - Alexandre Prola
- c INSERM UMR-S 1180, Univ. Paris-Sud, Université Paris Saclay , Chatenay-Malabry , France
| | - Julie Pires Da Silva
- c INSERM UMR-S 1180, Univ. Paris-Sud, Université Paris Saclay , Chatenay-Malabry , France
| | - Hassen Bacha
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
| | - Salwa Abid-Essefi
- a Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Monastir , Tunisia
| | - Christophe Lemaire
- d Université Versailles St-Quentin, Inserm UMR-S 1180, Univ Paris-Sud, Université Paris Saclay , Chatenay-Malabry , France
| |
Collapse
|
6
|
Ben Salem I, Boussabbeh M, Prola A, Guilbert A, Bacha H, Lemaire C, Abid-Essefi S. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15504-15514. [PMID: 27121014 DOI: 10.1007/s11356-016-6741-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | | | | | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Christophe Lemaire
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
- Université de Versailles Saint Quentin en Yvelines, Versailles, France
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia.
| |
Collapse
|
7
|
Ben Salem I, Prola A, Boussabbeh M, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C. Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones 2015; 20:927-38. [PMID: 26134454 PMCID: PMC4595428 DOI: 10.1007/s12192-015-0613-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are considered to be significant contaminants of food and animal feed. Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. ZEN has been shown to be cytotoxic, genotoxic, and mutagenic in different cell types. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in ZEN-mediated toxicity in human intestine (HCT116) and kidney (HEK293) cells and evaluated the effects of the two common dietary compounds Quercetin (QUER) and Crocin (CRO). We show that ZEN treatment induces ER stress and activates the unfolded protein response (UPR) as evidenced by XBP1 mRNA splicing and upregulation of GRP78, ATF4, GADD34, PDIA6, and CHOP. Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm), and an activation of caspases and DNA damages. We also demonstrate that the antioxidant properties of QUER and CRO help to prevent ER stress and reduce ZEN-induced apoptosis in HCT116 and HEK293 cells. Our results suggest that antioxidant molecule might be helpful to prevent ZEN-induced ER stress and toxicity.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | | | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | | | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia.
| | - Christophe Lemaire
- INSERM UMR-S 1180, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
- Université de Versailles Saint Quentin en Yvelines, Versailles, France
| |
Collapse
|
8
|
Boussabbeh M, Ben Salem I, Prola A, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol Sci 2015; 144:328-37. [PMID: 25577197 DOI: 10.1093/toxsci/kfu319] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Patulin (PAT) is a toxic metabolite produced by several filamentous fungi of the genera of Penicillium, Aspergillus, and Byssochlamys. PAT is the most common mycotoxin found in apples and apple-based products including juice, compotes, cider, and baby food. Exposure to this mycotoxin has been reported to induce intestinal and kidney injuries. This study investigated the mechanism of PAT-induced toxicity in human colon carcinoma (HCT116) and embryonic kidney cells (HEK293). We demonstrated that PAT activated endoplasmic reticulum (ER) and unfolded protein response as evidenced by up-regulation of GRP78 and GADD34, splicing of XBP1 mRNA, and expression of the proapoptotic factor CHOP. This ER stress response was accompanied by the induction of the mitochondrial apoptotic pathway. Apoptosis occurred with ROS production, drop in mitochondrial membrane potential and caspase activation. Further, we showed that deficiency of the proapoptotic protein Bax or Bak protected cells against PAT-induced apoptosis. The treatment of cells with the ROS scavenger N-acetyl cysteine inhibits the ER stress response and prevents mitochondrial apoptosis. Collectively, our data provide new mechanistic insights in the signaling pathways of the cell death induced by PAT and demonstrate that PAT induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathway in human intestinal and kidney cells.
Collapse
Affiliation(s)
- Manel Boussabbeh
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Intidhar Ben Salem
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Alexandre Prola
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Arnaud Guilbert
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Hassen Bacha
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Salwa Abid-Essefi
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Christophe Lemaire
- *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France *Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia, INSERM UMR-S 1180, LabEx LERMIT, Faculty of Pharmacy, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France and Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| |
Collapse
|
9
|
Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm 2014; 2014:708193. [PMID: 24523573 PMCID: PMC3910075 DOI: 10.1155/2014/708193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.
Collapse
|
10
|
Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense AP, Kolf-Clauw M, Oswald IP. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci 2012; 130:180-90. [PMID: 22859312 DOI: 10.1093/toxsci/kfs239] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intestinal epithelium is the first barrier against food contaminants and is highly sensitive to mycotoxins, especially de oxynivalenol (DON). Consumption of DON-contaminated food is associated with outbreaks of gastroenteritis. In cereals and their byproducts, DON is present together with two acetylated derivatives, 3-ADON and 15-ADON. The aim of this study was to compare the intestinal toxicity of DON and A-DONs, using noncytotoxic doses. The toxicity was assessed using in vitro (intestinal epithelial cell line), ex vivo (intestinal explants), and in vivo (animals exposed to mycotoxin-contaminated diets) models. The effects were studied on cell proliferation, barrier function, and intestinal structure. The mechanism of toxicity was investigated by measuring the expression of the tight junction proteins and of phosphorylated ERK1/2, p38, and JNK, which are effectors of signaling pathway involved in cellular programs including embryogenesis, proliferation, differentiation, and apoptosis. On proliferating cells, 3-ADON was less toxic than DON, which was less toxic than 15-ADON. On differentiated cells, 15-ADON impaired the barrier function, whereas DON and 3-ADON did not have a significant effect. Similarly, ex vivo and in vivo, 15-ADON caused more histological lesions than DON or 3-ADON. At the molecular level, the 15-ADON activated the mitogen-activated protein kinases (MAPK) ERK1/2, p38, and JNK in the intestinal cell line, explants, and the jejunum from exposed animals at lower dose than DON and 3-ADON. Our results show that the higher toxicity of 15-DON is due to its ability to activate the MAPK. Given that cereal-based foods are contaminated with DON and acetylated-DON, the higher toxicity of 15-ADON should be taken into account.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moon Y. Mucosal injuries due to ribosome-inactivating stress and the compensatory responses of the intestinal epithelial barrier. Toxins (Basel) 2011; 3:1263-77. [PMID: 22069695 PMCID: PMC3210458 DOI: 10.3390/toxins3101263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 12/14/2022] Open
Abstract
Ribosome-inactivating (ribotoxic) xenobiotics are capable of using cleavage and modification to damage 28S ribosomal RNA, which leads to translational arrest. The blockage of global protein synthesis predisposes rapidly dividing tissues, including gut epithelia, to damage from various pathogenic processes, including epithelial inflammation and carcinogenesis. In particular, mucosal exposure to ribotoxic stress triggers integrated processes that are important for barrier regulation and re-constitution to maintain gut homeostasis. In the present study, various experimental models of the mucosal barrier were evaluated for their response to acute and chronic exposure to ribotoxic agents. Specifically, this review focuses on the regulation of epithelial junctions, epithelial transporting systems, epithelial cytotoxicity, and compensatory responses to mucosal insults. The primary aim is to characterize the mechanisms associated with the intestinal epithelial responses induced by ribotoxic stress and to discuss the implications of ribotoxic stressors as chemical modulators of mucosa-associated diseases such as ulcerative colitis and epithelial cancers.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Korea.
| |
Collapse
|