1
|
Arteaga-Silva M, Limón-Morales O, Bonilla-Jaime H, Vigueras-Villaseñor RM, Rojas-Castañeda J, Hernández-Rodríguez J, Montes S, Hernández-González M, Ríos C. Effects of postnatal exposure to cadmium on male sexual incentive motivation and copulatory behavior: Estrogen and androgen receptors expression in adult brain rat. Reprod Toxicol 2023; 120:108445. [PMID: 37482142 DOI: 10.1016/j.reprotox.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -β), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.
Collapse
Affiliation(s)
- Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México.
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Julio Rojas-Castañeda
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Joel Hernández-Rodríguez
- Cuerpo Académico de Investigación en Salud de la Licenciatura en Quiropráctica (CA-UNEVE-01), Universidad Estatal del Valle de Ecatepec, Estado de México 55210, México
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Lago de Chapala y Calle 16, Aztlán, Reynosa 88740, México
| | - Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, México
| | - Camilo Ríos
- Dirección de Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, México
| |
Collapse
|
2
|
Schaefer HR, Flannery BM, Crosby L, Jones-Dominic OE, Punzalan C, Middleton K. A systematic review of adverse health effects associated with oral cadmium exposure. Regul Toxicol Pharmacol 2022; 134:105243. [PMID: 35981600 DOI: 10.1016/j.yrtph.2022.105243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
Scientific data characterizing the adverse health effects associated with dietary cadmium (Cd) exposure were identified in order to make informed decisions about the most appropriate toxicological reference value (TRV) for use in assessing dietary Cd exposure. Several TRVs are available for Cd and regulatory organizations have used epidemiologic studies to derive these reference values; however, risk of bias (RoB) evaluations were not included in the assessments. We performed a systematic review by conducting a thorough literature search (through January 4, 2020). There were 1714 references identified by the search strings and 328 studies identified in regulatory assessments. After applying the specific inclusion and exclusion criteria, 208 studies (Human: 105, Animal: 103) were considered eligible for further review and data extraction. For the epidemiologic and animal studies, the critical effects identified for oral Cd exposure from the eligible studies were a decrease in bone mineral density (BMD) and renal tubular degeneration. A RoB analysis was completed for 49 studies (30 epidemiological and 19 animal) investigating these endpoints. The studies identified through the SR that were considered high quality and low RoB (2 human and 5 animal) can be used to characterize dose-response relationships and inform the derivation of a Cd TRV.
Collapse
Affiliation(s)
- Heather R Schaefer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA.
| | - Brenna M Flannery
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lynn Crosby
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Olivia E Jones-Dominic
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Cecile Punzalan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Karlyn Middleton
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
3
|
Geng N, Song X, Cao R, Luo Y, A M, Cai Z, Yu K, Gao Y, Ni Y, Zhang H, Chen J. The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115922. [PMID: 33139092 DOI: 10.1016/j.envpol.2020.115922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 pollution was associated with numerous adverse health effects. However, PM2.5 induced toxic effects and the relationships with toxic components remain largely unknown. To evaluate the metabolic toxicity of PM2.5 at environmentally relevant doses, investigate the seasonal variation of PM2.5 induced toxicity and the relationship with toxic components, a combination of general pathophysiological tests and metabolomics analysis was conducted in this study to explore the response of SD rats to PM2.5 exposure. The result of general toxicology analysis revealed unconspicuous toxicity of PM2.5 under environmental dose, but winter PM2.5 at high dose caused severe histopathological damage to lung. Metabolomic analysis highlighted significant metabolic disorder induced by PM2.5 even at environmentally relevant doses. Lipid metabolism and GSH metabolism were primarily influenced by PM2.5 exposure due to the high levels of heavy metals. In addition, high levels of organic compounds such as PAHs, PCBs and PCDD/Fs in winter PM2.5 bring multiple overlaps on the toxic pathways, resulting in larger pulmonary toxicity and metabolic toxicity in rats than summer.
Collapse
Affiliation(s)
- Ningbo Geng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaoyao Song
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Rong Cao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yun Luo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mila A
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, Liaoning, 116028, China
| | - Zhengang Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Liaoning, China
| | - Kejie Yu
- The First Affiliated Hospital of Dalian Medical University, 116011, Liaoning, China
| | - Yuan Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yuwen Ni
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Haijun Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| |
Collapse
|
4
|
Hepatoprotective effect of atorvastatin on Cadmium chloride induced hepatotoxicity in rats. Life Sci 2020; 254:117770. [DOI: 10.1016/j.lfs.2020.117770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/14/2023]
|
5
|
Świetlicka I, Tomaszewska E, Muszyński S, Valverde Piedra JL, Świetlicki M, Prószyński A, Cieślak K, Wiącek D, Szymańczyk S, Kamiński D. The effect of cadmium exposition on the structure and mechanical properties of rat incisors. PLoS One 2019; 14:e0215370. [PMID: 30978248 PMCID: PMC6461291 DOI: 10.1371/journal.pone.0215370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/01/2019] [Indexed: 01/25/2023] Open
Abstract
Alterations in the structure and mechanical properties of teeth in adult Wistar rats exposed to cadmium were investigated. Analyses were conducted on two sets of incisors from female and male specimens, that were intoxicated with cadmium (n = 12) or belonged to the control (n = 12). The cadmium group was administered with CdCl2 dissolved in drinking water with a dose of 4mg/kgbw for 10 weeks. The oral intake of cadmium by adult rats led to the range of structural changes in enamel morphology and its mechanical features. A significant increase of cadmium levels in the teeth in comparison to the control, a slight shift in the colour and reduction of pigmented enamel length, higher surface irregularity, a decrease of hydroxyapatite crystals size in the c-axis and simultaneous increase in pigmented enamel hardness were observed. The extent of these changes was sex-dependent and was more pronounced in males.
Collapse
Affiliation(s)
- Izabela Świetlicka
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Jose Luis Valverde Piedra
- Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Adam Prószyński
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Krystian Cieślak
- Institute of Renewable Energy Engineering, Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
| | - Dariusz Wiącek
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Daniel Kamiński
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
6
|
Dragone R, Ermilov L, Grasso G, Maggioni S, Mantovani A, Frazzoli C. Antioxidant power as biochemical endpoint in bread for screening and early managing quality and toxicant-related safety anomalies in food production. Food Chem Toxicol 2016; 94:31-8. [PMID: 27174639 DOI: 10.1016/j.fct.2016.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Flaxseeds are both a food ingredient and a natural source of antioxidants (e.g. lignans, PUFAs) and pro-oxidant contaminants (e.g. cadmium): the variable mixture of anti- and pro-oxidant substances may impact on the redox homeostasis of flaxseed-enriched foods. The antioxidant power is studied here as biochemical activity of flaxseeds in white wheat bread and as endpoint for possible screening of anomalous variations of bioactive mixtures (antioxidants vs. prooxidants) in food matrices. A bioprobe assay based on the superoxide dismutase (SOD) enzyme (6 channels of the multiprobe bioelectronic platform BEST) was performed on white wheat bread with and without flaxseeds. Nine BEST channels were simultaneously used for validation and monitoring of measuring conditions (temperature, pH, conductivity). Findings were compared with quantitative analysis of antioxidants and pro-oxidant contaminants. Organic and aqueous extracts of both bread types were examined in parallel. The SOD-probe detected the difference in antioxidant power given by 10% flaxseed, thus supporting the use of antioxidant power detected by bioenzymatic screening as sensitive biochemical endpoint. Mixtures of bioactive molecules in foods generate biochemical activities that can be monitored as time-effective indicators of invariability, which is pivotal in the daily control of anomalies in food production and therefore in the protection of consumers' health.
Collapse
Affiliation(s)
- Roberto Dragone
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Laura Ermilov
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Gerardo Grasso
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Silvia Maggioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", V. La Masa 19, Milan, Italy
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - Chiara Frazzoli
- External Relations Office, Istituto Superiore di Sanità, V. Giano della Bella 34, 00162, Rome, Italy.
| |
Collapse
|
7
|
Abstract
Noninvasive, imaging-based methodologies provide for the first time the possibility to spatio-temporally investigate physiopathological events and long-term effects of drug administration of exposure to environmental and alimentary toxic compounds. Hence, this novel methodology could enable us to measure the dynamics of specific molecular pathways in live animals. In the last few years, animals, particularly mice, were genetically modified to respond to a specific stimulus with the production of proteins, named "reporters," that are easily detected and quantitated by in vivo and ex vivo imaging. These "reporter mice" are gradually being applied to the pharmaco-toxicological research. In the generation of a reporter mouse useful for pharmaco-toxicological studies several elements need to be considered in the selection of the reporter system: the half-life of proteins should be compatible with the necessities of the study to assess the onset and the termination of the stimulus of interest, in all tissues the response should be proportional to the given stimulus, and the imaging modalities requested for reporter measurements should be applicable to high-throughput screening. Bioluminescence-based imaging (BLI) in small animals has the advantage over other modalities that does not require too sophisticated equipment or specifically and highly trained personnel, and furthermore may be carried out at a relative rapidity and low cost; for these reasons several luciferases have been developed for in vivo imaging applications and used in the generation of reporter mice. We here describe a BLI-based reporter mouse created to respond to estrogenic stimuli, which has been applied to the study of female physiopathology as well as for the identification of the effects of selective drugs or toxic compounds present in the environment and in the alimentary chain.
Collapse
|
8
|
SUMO-specific protease 1 modulates cadmium-augmented transcriptional activity of androgen receptor (AR) by reversing AR SUMOylation. Toxicol Lett 2014; 229:405-13. [DOI: 10.1016/j.toxlet.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/01/2014] [Accepted: 07/06/2014] [Indexed: 12/13/2022]
|
9
|
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:63-73. [PMID: 23338949 PMCID: PMC4017651 DOI: 10.1007/s10911-013-9273-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022] Open
Abstract
Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer.
Collapse
Affiliation(s)
- Celia Byrne
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
10
|
Effect of hormone replacement therapy in matrix metalloproteinase expression and intimal hyperplasia development after vascular injury. Ann Vasc Surg 2012; 27:337-45. [PMID: 23088810 DOI: 10.1016/j.avsg.2012.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Postmenopausal women taking hormone replacement therapy (HRT) require secondary intervention after vascular reconstruction more frequently than women not taking HRT, often due to increased development of intimal hyperplasia (IH). Matrix metalloproteinases (MMPs) play a role in IH by degradation and remodeling of components of the vascular basement membrane. The MMP pathway is regulated by a balance between MMPs, membrane-type MMPs (MT-MMPs), and tissue inhibitor of MMPs (TIMPs). We have recently provided evidence for unbalanced regulation of the MT1-MMP/MMP-2 pathway in vascular smooth muscle cells (VSMCs) exposed to hormones in vitro. Herein we study the role of HRT in the development of IH in a postmenopausal rodent model of vascular injury and in the modulation of this MMP regulatory pathway in vivo. METHODS Female rats were aged to 12 months. Animals were ovariectomized (OVX) and 4 weeks later hormones or placebo was delivered via a 90-day slow-release pellet. After 6 weeks of HRT each rat underwent balloon angioplasty of the left common carotid artery. At 14 days postinjury tissue samples were collected and stained with trichrome elastin and for isoform-specific MMPs. RESULTS After vascular injury, the intima:media (I:M) ratio was decreased in OVX rats receiving placebos as compared with non-OVX controls (P < 0.05). In OVX animals receiving HRT, estrogen with and without progesterone and progesterone alone slightly increased I:M ratio compared with placebo, although no significant difference was found in any HRT group. Injury-induced intimal expression of MMP-2 and -9 was decreased in OVX placebo animals compared with non-OVX controls (P < 0.05). MMP-2 and -9 levels were subsequently increased by each type of hormone therapy compared with placebo, with a significant increase in MMP-9 in response to estrogen with and without progesterone (P < 0.05). Conversely, TIMP-2 was decreased by estrogen compared with placebo (P < 0.05). There was no effect on intimal MT1-MMP in any group. CONCLUSIONS In this study we detected a statistically significant decrease in IH as a result of OVX. Subsequent HRT exposure resulted in increased I:M ratios compared with OVX animals given placebo, although significance was not reached with the doses given. Long-term exogenous exposure may have a more deleterious effect compared with acute exposure and should be examined further. We also demonstrated a significant reduction in MMP-2 and -9 and TIMP-2 in response to OVX. Subsequent hormone exposure resulted in the upregulation of MMP-2 and -9 without a counterregulatory increase in TIMP, indicating that HRT modulates the MMP regulatory pathway in vivo. The data suggest that the lack of hormones after OVX protects against pathologic remodeling in our aged model of disease and that exposure to both natural and exogenous hormones could be a negative risk factor resulting in an exaggerated vascular response to injury. Future studies should focus on in vivo manipulation of unbalanced MMP regulation for prevention of IH in response to HRT and in general. Furthermore, the age-associated difference in response to the presence of natural hormones in young vs aged models should be investigated.
Collapse
|
11
|
Pihlajamaa P, Zhang FP, Saarinen L, Mikkonen L, Hautaniemi S, Jänne OA. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011; 152:4395-405. [PMID: 21878517 DOI: 10.1210/en.2011-0221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To enable studies of androgen signaling in different tissues in vivo, we generated an androgen receptor (AR) reporter mouse line by inserting a luciferase gene construct into the murine genome. The construct is driven by four copies of androgen-responsive elements from the mouse sex-limited protein gene (slp-HRE2) and a minimal thymidine kinase promoter. Luciferase activity was readily measurable in a number of murine tissues, including prostate, lung, testis, brain, and skeletal muscle, and testosterone administration elicited a significant increase in reporter gene activity in these tissues. Consumption of isoflavonoid genistein is linked to reduced risk of prostate cancer, but direct effects of genistein on the AR pathway are not well understood. To examine androgen-modulating activity of genistein in vivo, male mice received daily doses of genistein (10 mg/kg) for 5 d. In intact males, genistein was antiandrogenic in testis, prostate, and brain, and it attenuated reporter gene activity by 50-80%. In castrated males, genistein exhibited significant androgen agonistic activity in prostate and brain by increasing reporter gene activity over 2-fold in both tissues. No antiandrogenic action was seen in lung or skeletal muscle of intact males. Gene expression profiling of the murine prostate under the same experimental conditions revealed that genistein modulates androgen-dependent transcription program in prostate in a fashion similar to that observed in reporter mice by luciferase expression. In conclusion, genistein is a partial androgen agonist/antagonist in some but not in all mouse tissues and should be considered as a tissue-specific AR modulator.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, and Department of Clinical Chemistry, Helsinki University Central Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|