1
|
Nilchi S, Neyshaburinezhad N, Rouini M, Lavasani H, Foroumadi A, Ardakani YH. Study the effect of 3,4-Methylenedioxy methamphetamine on cytochrome P450 2E1 activity. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
2
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Toward a systems approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1 and their functional consequences. Biochem J 2017; 474:3523-3542. [PMID: 28904078 DOI: 10.1042/bcj20170543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.
Collapse
|
4
|
Jamshidfar S, Ardakani YH, Lavasani H, Rouini M. Inhibition of mirtazapine metabolism by Ecstasy (MDMA) in isolated perfused rat liver model. Daru 2017; 25:16. [PMID: 28659160 PMCID: PMC5490157 DOI: 10.1186/s40199-017-0183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022] Open
Abstract
Background Nowadays MDMA (3,4-methylendioxymethamphetamine), known as ecstasy, is widely abused among the youth because of euphoria induction in acute exposure. However, abusers are predisposed to depression in chronic consumption of this illicit compound. Mirtazapine (MRZ), an antidepressant agent, may be prescribed in MDMA-induced depression. MRZ is extensively metabolized in liver by CYP450 isoenzymes. 8-hydroxymirtazapine (8-OH) is mainly produced by CYP2D6. N-desmethylmirtazapine (NDES) is generated by CYP3A4. MDMA is also metabolized by the mentioned isoenzymes and demonstrates mechanism-based inhibition (MBI) in association with CYP2D6. Several studies revealed that MDMA showed inhibitory effects on CYP3A4. In the present study, our aim was to evaluate the impact of MDMA on the metabolism of MRZ in liver. Therefore, isolated perfused rat liver model was applied as our model of choice in this assessment. Methods The subjects of the study were categorized into two experimental groups. Rats in the control group received MRZ-containing Krebs-Henselit buffer (1 μg/ml). Rats in the treatment group received aqueous solution of 1 mg/ml MDMA (3 mg/kg) intraperitoneally 1 hour before receiving MRZ. Perfusate samples were analyzed by HPLC. Results Analyses of perfusate samples showed 80% increase in the parent drug concentrations and 50% decrease in the concentrations of both metabolites in our treatment group compared to the control group. In the treatment group compared to the control group, AUC(0–120) of the parent drug demonstrated 50% increase and AUC(0–120) of 8-OH and NDES showed 70% and 60% decrease, respectively. Observed decrease in metabolic ratios were 83% and 79% for 8-OH and NDES in treatment group compared to control group, respectively. Hepatic clearance (CLh) and intrinsic clearance (Clint) showed 20% and 60% decrease in treatment group compared to control group. Conclusion All findings prove the inhibitory effects of ecstasy on both CYP2D6 and CYP3A4 hepatic isoenzymes. In conclusion, this study is the first investigation of MRZ metabolism in presence of MDMA in isolated perfused rat liver model. Graphical abstract ![]()
Collapse
Affiliation(s)
- Sanaz Jamshidfar
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda H Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Lavasani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shang W, Liu J, Chen R, Ning R, Xiong J, Liu W, Mao Z, Hu G, Yang J. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells. Xenobiotica 2015; 46:393-405. [DOI: 10.3109/00498254.2015.1082209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Li X, Hu X, Jin X, Zhou X, Wang X, Shi D, Bi D. IFN-γ regulates cytochrome 3A29 through pregnane X receptor in pigs. Xenobiotica 2014; 45:373-9. [PMID: 25413352 DOI: 10.3109/00498254.2014.985761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The expression and the activity of cytochromes P450 (CYPs) can be elevated by the activation of nuclear receptors. The pregnane X receptor (PXR, or nuclear receptor NR1I2) is a ligand-activated transcription factor that mediates responses to diverse xenobiotics and endogenous chemicals. Here we investigated the regulatory role of PXR in IFN-γ-mediated CYP3A29 expression in pig liver microsomes, primary porcine hepatocytes, and a cultured hepatocyte cell line. 2. IFN-γ significantly up-regulated CYP3A29 and PXR expressions at mRNA and protein levels in a dose-dependent manner. IFN-γ treatment significantly increased the metabolism of nifedipine. PXR and IFN-γ treatments significantly enhanced the activity of CYP3A29 promoter and the upstream region from -1473 to -1021 of CYP3A29 might be PXR-binding site. Moreover, the IFN-γ-induced CYP3A29 expression was blocked by PXR knockdown, whereas CYP3A29 mRNA and protein expression levels were dramatically elevated by PXR overexpression. 3. The regulatory effect of IFN-γ on CYP3A29 expression is mediated via PXR.
Collapse
Affiliation(s)
- Xiaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Downey C, Daly F, O’Boyle K. An in vitro approach to assessing a potential drug interaction between MDMA (ecstasy) and caffeine. Toxicol In Vitro 2014; 28:231-9. [DOI: 10.1016/j.tiv.2013.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022]
|
8
|
Lau C, Mooiman KD, Maas-Bakker RF, Beijnen JH, Schellens JHM, Meijerman I. Effect of Chinese herbs on CYP3A4 activity and expression in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:543-549. [PMID: 23876595 DOI: 10.1016/j.jep.2013.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has become more popular among cancer patients in the Western world, who often use Chinese herbs as adjuvant therapy to reduce the adverse effects of conventional chemotherapy. However, pharmacokinetic (PK) interactions between Chinese herbs and anticancer drugs can occur and have dramatic consequences for these patients. Currently, only a few possible PK interactions between Chinese herbs and conventional Western drugs have been documented. AIM OF THE STUDY Since the drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) contributes to most of the PK interactions with (anticancer) drugs, the effect of four Chinese herbs (Oldenlandia diffusa, Codonopsis tangshen, Rehmannia glutinosa and Astragalus propinquus) on the activity and expression of CYP3A4 was investigated in vitro. MATERIALS AND METHODS Ethanol and water-ethanol extracts of the four Chinese herbs were prepared from raw material. CYP3A4 inhibition was assessed by the use of Supersomes™ in a fluorescence assay. Furthermore, CYP3A4 induction was evaluated in a human pregnane X receptor (hPXR)-mediated CYP3A4 reporter gene assay and a quantitative real time PCR assay, both in human colon adenocarcinoma-derived LS180 cells (LS180). RESULTS Extracts of Oldenlandia diffusa, Codonopsis tangshen, Rehmannia glutinosa and Astragalus propinquus inhibited CYP3A4 in human CYP3A4 Supersomes™ (IC50 values: 17-83 µg/mL). Oldenlandia diffusa and Rehmannia glutinosa significantly induced PXR-mediated CYP3A4 (p<0.001). Oldenlandia diffusa also significantly induced CYP3A4 mRNA levels (p<0.001 at 250 µg/mL). CONCLUSIONS Concomitant use of Oldenlandia diffusa and Rehmannia glutinosa could result in induction of CYP3A4, leading to a reduced efficacy of drugs that are CYP3A4 substrates and have a narrow therapeutic window. Because of the possible enhanced toxicity caused by CYP3A4 inhibition, clinical effects of CYP3A4 inhibition by Astragalus propinquus and Codonopsis tangshen must also be taken into account. In conclusion, herb-drug interactions between Chinese herbs and various CYP3A4 substrates can occur. Further research to investigate the clinical relevance of the interactions caused by Oldenlandia diffusa, Codonopsis tangshen, Rehmannia glutinosa and Astragalus propinquus is required.
Collapse
Affiliation(s)
- C Lau
- Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Karimullina E, Li Y, Ginjupalli G, Baldwin WS. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 116-117:69-78. [PMID: 22466357 PMCID: PMC3334431 DOI: 10.1016/j.aquatox.2012.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 05/20/2023]
Abstract
Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.
Collapse
Affiliation(s)
- Elina Karimullina
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA 29634
- Institute of Plant & Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia 620144
- Fullbright Foundation Post-graduate Fellow
| | - Yangchun Li
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA 29634
| | - Gautam Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA 29634
| | - William S. Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA 29634
- Biological Sciences, Clemson University, Clemson, SC, USA
- To Whom Correspondence Should Be Addressed: William S. Baldwin, Clemson University, Biological Sciences, 132 Long Hall, Clemson, SC 29634, 864-656-2340,
| |
Collapse
|
10
|
Wang X, Lou YJ, Wang MX, Shi YW, Xu HX, Kong LD. Furocoumarins affect hepatic cytochrome P450 and renal organic ion transporters in mice. Toxicol Lett 2012; 209:67-77. [DOI: 10.1016/j.toxlet.2011.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/20/2023]
|
11
|
Antolino-Lobo I, Meulenbelt J, van den Berg M, van Duursen MB. A mechanistic insight into 3,4-methylenedioxymethamphetamine (“ecstasy”)-mediated hepatotoxicity. Vet Q 2011; 31:193-205. [DOI: 10.1080/01652176.2011.642534] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Antolino-Lobo I, Meulenbelt J, Molendijk J, Nijmeijer SM, Scherpenisse P, van den Berg M, van Duursen MB. Induction of glutathione synthesis and conjugation by 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dihydroxymethamphetamine (HHMA) in human and rat liver cells, including the protective role of some antioxidants. Toxicology 2011; 289:175-84. [DOI: 10.1016/j.tox.2011.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022]
|