1
|
Sakouhi L, Hussaan M, Murata Y, Chaoui A. Role of calcium signaling in cadmium stress mitigation by indol-3-acetic acid and gibberellin in chickpea seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16972-16985. [PMID: 38329668 DOI: 10.1007/s11356-024-32327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Given the adverse impacts of heavy metals on plant development and physiological processes, the present research investigated the protective role of indole-3-acetic acid (IAA) and gibberellic acid (GA3) against cadmium (Cd)-induced injury in chickpea seedlings. Therefore, seeds germinated for 6 days in a medium containing 200 μM Cd alone or combined with 10 μM GA3 or 10 μM IAA. Both GA3 and IAA mitigated Cd-imposed growth delays in roots and shoots (80% and 50% increase in root and shoot length, respectively). This beneficial effect was accompanied by a significant reduction in Cd2+ accumulation in both roots (74% for IAA and 38% for GA3) and shoots (68% and 35%, respectively). Furthermore, these phytohormones restored the cellular redox state by reducing the activity of NADPH oxidase and downregulating the transcription level of RbohF and RbohD genes. Likewise, hydrogen peroxide contents were reduced by GA3 and IAA supply. Additionally, GA3 and IAA countered the Cd-induced reduction in total phenols, flavonoids, and reducing sugars in both roots and shoots. The exogenous effectors enhanced the activities of catalase, ascorbate peroxidase, and thioredoxin, as well as the corresponding gene expressions. Interestingly, adding GA3 and IAA to the Cd-contaminated germination media corrected the level of calcium (Ca2+) ion within seedling tissues. This effect coincided with the upregulation of key genes associated with stress sensing and signal transduction, including auxin-binding protein (ABP19a), mitogen-activated protein kinase (MAPK2), calcium-dependent protein kinase (CDPK1), and calmodulin (CaM). Overall, the current results suggest that GA3 and IAA sustain the Ca2+ signaling pathway, resulting in metal phytotoxicity relief. Amendment of agricultural soils contaminated with heavy metals with GA3 or IAA could represent an effective practice to improve crop yield.
Collapse
Affiliation(s)
- Lamia Sakouhi
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia.
| | - Muhammad Hussaan
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Abdelilah Chaoui
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia
| |
Collapse
|
2
|
Halloum I, Al-Attrache H, El-Ghoz K, Hammoud L, Abdel-Razzak Z. Dose-dependent interaction of two heavy metals with amiodarone toxicity in Saccharomyces cerevisiae. Toxicol Ind Health 2022; 38:249-258. [PMID: 35513769 DOI: 10.1177/07482337221088354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amiodarone (AMD) is an antiarrhythmic drug that induces idiosyncratic toxicity. Environmental pollutants, including heavy metals, could interact with its toxicity by affecting pharmacokinetics and pharmacodynamics. Other levels of interaction could exist in yeast, such as oxidative stress and the general stress response. In this study, we investigated the interaction of mercury chloride (HgCl2) and cadmium chloride (CdCl2) with AMD toxicity on Saccharomyces cerevisiae. Interaction type - synergistic, additive, or antagonistic - was determined by median drug effect analysis using "CompuSyn". HgCl2 potentiated AMD toxicity at high doses (≥ 71.4 μm, which yielded more than 60% inhibition). CdCl2 acted similarly at high doses (≥ 57.9 μm). An antagonistic effect appeared at lower doses with both heavy metals (≤ 49.4 μm for HgCl2 and AMD; ≤ 18.9 μm for CdCl2 and AMD). The threshold concentrations (HgCl2 or CdCl2 combined with AMD) that switched the interaction from antagonistic to additive, and then to synergistic, were decreased in the yeast strain mutant in catalase (CTT1), suggesting an important role for this enzyme. Moreover, mutation of the nutrient sensing receptor gene GPR1 caused the synergistic interaction of CdCl2, but not HgCl2, with AMD to occur at the lowest tested concentrations (1.2 μm). The reverse was obtained with the mutant strain in calcium-manganese transporter gene PMR1, where the synergistic interaction of HgCl2 with AMD occurred at concentrations (20.7 μm) lower than that of the wild type (71.4 μm). These results demonstrated a dose-dependent interaction between the two heavy metals with AMD toxicity, and the involvement of oxidative stress, calcium homeostasis, and nutrient sensing in the observed interaction.
Collapse
Affiliation(s)
- Iman Halloum
- 63572Lebanese University, FS1, Rafic Hariri Campus, Beirut. Lebanon
| | - Houssein Al-Attrache
- 63572Lebanese University, FS1, Rafic Hariri Campus, Beirut. Lebanon.,Faculty of Sciences, Section III, 63572Lebanese University, Tripoli, Lebanon.,Faculty of Public Health, Section IV, 63572Lebanese University, Zahleh, Lebanon
| | - Katia El-Ghoz
- 63572Lebanese University, FS1, Rafic Hariri Campus, Beirut. Lebanon
| | - Lara Hammoud
- Faculty of Sciences, Section III, 63572Lebanese University, Tripoli, Lebanon
| | - Ziad Abdel-Razzak
- 63572Lebanese University, FS1, Rafic Hariri Campus, Beirut. Lebanon.,EDST, AZM biotechnology research center, LBA3B, Tripoli, Lebanon
| |
Collapse
|
3
|
Ortega P, Vitorino HA, Green S, Zanotto FP, Chung JS, Moreira RG. Experimental effects of cadmium on physiological response of Callinectes danae (Crustacea, Portunidae) from environments with different levels of Cd contamination. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109210. [PMID: 34628057 DOI: 10.1016/j.cbpc.2021.109210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) can adversely affect aquatic life, altering reproductive and molting processes in crustaceans. The objective of this study was to evaluate the influence of Cd on reproduction and molting in the crab Callinectes danae. Adult females were obtained from environments with different levels of pollution: low (LC), medium (MC), and high contaminated (HC) areas. Animals from LC, MC, and HC areas were exposed to 0, 0.5, and 2 mg L-1 of CdCl2 for 3 h. Cd bioaccumulation, oxidative stress (evaluated by antioxidant enzymes activity), and lipid peroxidation (LPX) were analyzed in mature ovaries (stage II), gills, and hepatopancreas. The expression levels of crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) genes were quantified in the eyestalks, while 17β-estradiol (E2) and melatonin concentration were measured in the hemolymph. Cd bioaccumulated mainly in the hepatopancreas and gills, with increased E2, LPX, and antioxidant enzymes in HC compared to the LC region. Decreased CHH and MIH transcripts were observed in the animals from HC regions compared to LC and MC areas. Physiological differences were recorded, especially for bioaccumulation, oxidative stress, and hormone levels, in animals sampled in HC areas compared to LC and MC regions. In conclusion, the physiological damage triggered by Cd could be reduced due to higher levels of melatonin and antioxidant enzymes in HC areas.
Collapse
Affiliation(s)
- Priscila Ortega
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Instituto de Biociências (IB), Universidade de São Paulo (USP), Brazil.
| | - Hector Aguilar Vitorino
- Laboratório de Química Bioinorgânica e Metalofármacos (LAQBAM), Instituto de Química (IQ), Universidade de São Paulo (USP), Brazil; BIOMET Research Group, Faculty of Science, National University of Engineering, Av. Túpac Amaru 210, Rímac 15333, Lima, Peru.
| | - Shadaesha Green
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science (UMCES), Baltimore, USA.
| | - Flavia P Zanotto
- Laboratório de Biologia Celular de Invertebrados Marinhos (LabCel), Instituto de Biociências (IB), Universidade de São Paulo (USP), Brazil.
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science (UMCES), Baltimore, USA.
| | - Renata G Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Instituto de Biociências (IB), Universidade de São Paulo (USP), Brazil.
| |
Collapse
|
4
|
Grau-Perez M, Voruganti VS, Balakrishnan P, Haack K, Goessler W, Franceschini N, Redón J, Cole SA, Navas-Acien A, Tellez-Plaza M. Genetic variation and urine cadmium levels: ABCC1 effects in the Strong Heart Family Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116717. [PMID: 33640655 PMCID: PMC8026674 DOI: 10.1016/j.envpol.2021.116717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Genetic effects are suspected to influence cadmium internal dose. Our objective was to assess genetic determinants of urine cadmium in American Indian adults participating in the Strong Heart Family Study (SHFS). Urine cadmium levels and genotyped short tandem repeat (STR) markers were available on 1936 SHFS participants. We investigated heritability, including gene-by-sex and smoking interactions, and STR-based quantitative trait locus (QTL) linkage, using a variance-component decomposition approach, which incorporates the genetic information contained in the pedigrees. We also used available single nucleotide polymorphisms (SNPs) from Illumina's Metabochip and custom panel to assess whether promising QTLs associated regions could be attributed to SNPs annotated to specific genes. Median urine cadmium levels were 0.44 μg/g creatinine. The heritability of urine cadmium concentrations was 28%, with no evidence of gene-by-sex or -smoking interaction. We found strong statistical evidence for a genetic locus at chromosome 16 determining urine cadmium concentrations (Logarithm of odds score [LOD] = 3.8). Among the top 20 associated SNPs in this locus, 17 were annotated to ABCC1 (p-values from 0.0002 to 0.02), and attenuated the maximum linkage peak by a ∼40%. Suggestive QTL signals (LOD>1.9) in chromosomes 2, 6, 11, 14, and 19, showed associated SNPs in the genes NDUFA10, PDE10A, PLEKHA7, BAZ1A and CHAF1A, respectively. Our findings support that urinary cadmium levels are heritable and influenced by a QTL on chromosome 16, which was explained by genetic variation in ABCC1. Studies with extended sets of genome-wide markers are needed to confirm these findings and to identify additional metabolism and toxicity pathways for cadmium.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Preventive Medicine and Public Health and Microbiology, Universidad Autonoma de Madrid, Madrid, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain.
| | - V Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University of Graz, Graz, Austria
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josep Redón
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Internal Medicine, Hospital Clinic of Valencia, University of Valencia, Valencia, Valencia, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Preventive Medicine and Public Health and Microbiology, Universidad Autonoma de Madrid, Madrid, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Madrid, Spain; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Pozgajova M, Navratilova A, Arvay J, Duranova H, Trakovicka A. Impact of cadmium and nickel on ion homeostasis in the yeast Schizosaccharomyces pombe. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:166-173. [PMID: 31588841 DOI: 10.1080/03601234.2019.1673613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Toxicity of heavy metals to living organisms is a worldwide research topic. Although, much has been discovered about cadmium and nickel impact on biological systems, a lot still remains unclear. We used inductively coupled plasma - optical emission spectroscopy to address the question of the effect of two different heavy metals nickel, and cadmium on intracellular ion balance. Increase or decrease of the content of several essential cations including Ca2+, Na+, K+, Mg2+, Cu2+, Fe3+ in the yeast Schizosaccharomyces pombe was determined. Our results revealed that the cell exposure to high nickel and cadmium concentrations led to significant elevation of Ca2+, Na+, Mg2+, Cu2+, Fe3+ levels in the yeast cell, while the content of K+ decreased. Correlation analyses showing in the presence of nickel and cadmium strong positive correlation among each tested element (Ca2+, Na+, Cu2+, Mg2+ and Fe3+) except for K+, demonstrate the significant impact of heavy metal treatment to ion homeostasis of the cell. Our data indicate that acute nickel and cadmium contamination leads to substantial ionome misbalance in yeast.
Collapse
Affiliation(s)
- Miroslava Pozgajova
- AgroBioTech Research Center, Slovak University of Agriculture, Nitra, Slovakia
| | - Alica Navratilova
- Department of Genetics and Breeding Biology, Slovak University of Agriculture, Nitra, Slovakia
| | - Julius Arvay
- Department of Chemistry, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Duranova
- AgroBioTech Research Center, Slovak University of Agriculture, Nitra, Slovakia
| | - Anna Trakovicka
- Department of Genetics and Breeding Biology, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
6
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z. Overexpression of OLE1 Enhances Cytoplasmic Membrane Stability and Confers Resistance to Cadmium in Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:e02319-16. [PMID: 27793829 PMCID: PMC5165106 DOI: 10.1128/aem.02319-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023] Open
Abstract
The heavy metal cadmium is widely used and released into the environment, posing a severe threat to crops and humans. Saccharomyces cerevisiae is one of the most commonly used organisms in the investigation of environmental metal toxicity. We investigated cadmium stress and the adaptive mechanisms of yeast by screening a genome-wide essential gene overexpression library. A candidate gene, OLE1, encodes a delta-9 desaturase and was associated with high anti-cadmium-stress activity. The results demonstrated that the expression of OLE1 was positively correlated with cadmium stress tolerance and induction was independent of Mga2p and Spt23p (important regulatory factors for OLE1). Moreover, in response to cadmium stress, cellular levels of monounsaturated fatty acids were increased. The addition of exogenous unsaturated fatty acids simulated overexpression of OLE1, leading to cadmium resistance. Such regulation of OLE1 in the synthesis of unsaturated fatty acids may serve as a positive feedback mechanism to help cells counter the lipid peroxidation and cytoplasmic membrane damage caused by cadmium. IMPORTANCE A S. cerevisiae gene encoding a delta-9 desaturase, OLE1, was associated with high anti-cadmium-stress activity. The data suggest that the regulation of OLE1 in the synthesis of unsaturated fatty acids may serve as a positive feedback mechanism to help yeast cells counter the lipid peroxidation and cytoplasmic membrane damage caused by cadmium. The discovery of OLE1 involvement in membrane stability may indicate a novel defense strategy against cadmium stress.
Collapse
Affiliation(s)
- Zhijia Fang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhongxiang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuhu Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Youshang Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
8
|
Ansari MA, Fatima Z, Hameed S. Anticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida albicans. PLoS One 2016; 11:e0162465. [PMID: 27627759 PMCID: PMC5023166 DOI: 10.1371/journal.pone.0162465] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The transcriptome data revealed a link between calcineurin signaling and PA as among the several categories of PA responsive genes the down regulation of calcineurin signaling gene CNB1 was noteworthy which was also confirmed by both molecular docking and susceptibility assays. We observed that PA treated Candida phenocopied compromised calcineurin pathway stress responses and turned sensitive to alkaline pH, ionic, membrane, salinity, endoplasmic reticulum and serum stresses. Indispensability of functional calcineurin was further confirmed as calcineurin mutant was hypersensitive to PA while constitutively expressed calcineurin strain remained resistant. We explored that PA leads to perturbed membrane integrity as depicted through depleted ergosterol levels and disrupted pH homeostasis. Moreover, PA caused cell wall damage which was evident from hypersensitivity against cell wall perturbing agents (congo red, calcoflour white), SEM and enhanced rate of cell sedimentation. Furthermore, PA inhibited potential virulence traits including morphological transition, biofilm formation and displayed diminished capacity to adhere both to the polystyrene surface and buccal epithelial cells. The study also revealed that PA leads to cell cycle arrest and mitochondrial dysfunction in C. albicans. Together, the present study provides enough evidence for further work on PA so that better strategies could be employed to treat Candida infections.
Collapse
Affiliation(s)
- Moiz A. Ansari
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
- * E-mail: (SH); (ZF)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
- * E-mail: (SH); (ZF)
| |
Collapse
|
9
|
Chen M, Yin H, Bai P, Miao P, Deng X, Xu Y, Hu J, Yin J. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells. Toxicol Appl Pharmacol 2016; 303:11-20. [DOI: 10.1016/j.taap.2016.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/04/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022]
|
10
|
Caetano SM, Menezes R, Amaral C, Rodrigues-Pousada C, Pimentel C. Repression of the Low Affinity Iron Transporter Gene FET4: A NOVEL MECHANISM AGAINST CADMIUM TOXICITY ORCHESTRATED BY YAP1 VIA ROX1. J Biol Chem 2015; 290:18584-95. [PMID: 26063801 DOI: 10.1074/jbc.m114.600742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 11/06/2022] Open
Abstract
Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake.
Collapse
Affiliation(s)
- Soraia M Caetano
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and
| | - Regina Menezes
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and the Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Catarina Amaral
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and
| | | | - Catarina Pimentel
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and
| |
Collapse
|
11
|
Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. EUKARYOTIC CELL 2015; 14:324-34. [PMID: 25636321 DOI: 10.1128/ec.00271-14] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole, which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signaling systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many transcriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by themselves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling pathway. This targeting disrupts Ca(2+) homeostasis, which suggests that this pathway contains potential targets for the development of new antifungal drugs.
Collapse
|
12
|
Ortega P, Custódio MR, Zanotto FP. Characterization of cadmium plasma membrane transport in gills of a mangrove crab Ucides cordatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:21-29. [PMID: 25456216 DOI: 10.1016/j.aquatox.2014.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
Membrane pathway for intracellular cadmium (Cd(2+)) accumulation is not fully elucidated in many organisms and has not been studied in crab gill cells. To characterize membrane Cd(2+) transport of anterior and posterior gill cells of Ucides cordatus, a hypo-hyper-regulating crab, a change in intracellular Cd(2+) concentration under various experimental conditions was examined by using FluoZin, a fluorescent probe. The membrane Cd(2+) transport was estimated by the augmentation of FluoZin fluorescence induced by extracellular application of CdCl2 and different inhibitors. Addition of extracellular calcium (Ca(2+)) to the cells affected little the fluorescence of FluoZin, confirming that Cd(2+) was the main ion increasing intracellular fluorescence. Ca(2+) channels blockers (nimodipine and verapamil) decreased Cd(2+) influx as well as vanadate, a Ca(2+)-ATPase blocker. Chelating intracellular Ca(2+) (BAPTA) decreased Cd(2+) influx in gill cells, while increasing intracellular Ca(2+) (caffeine) augmented Cd influx. Cd(2+) and ATP added at different temporal conditions were not effective at increasing intracellular Cd(2+) accumulation. Ouabain (Na(+)/K(+)-ATPase inhibitor) increased Cd(2+) influx probably through a change in intracellular Na and/or a change in cell membrane potential. Routes of Cd(2+) influx, a non-essential metal, through the gill cell plasma membrane of crabs are suggested.
Collapse
Affiliation(s)
- P Ortega
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP, Brazil
| | - M R Custódio
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP, Brazil
| | - F P Zanotto
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP, Brazil; Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo 04044-020, Brazil.
| |
Collapse
|
13
|
A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe. J Microbiol 2014; 52:976-81. [DOI: 10.1007/s12275-014-3512-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/03/2023]
|
14
|
Shukla D, Huda KMK, Banu MSA, Gill SS, Gill SS, Tuteja R, Tuteja N. OsACA6, a P-type 2B Ca(2+) ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. PLANTA 2014; 240:809-24. [PMID: 25074587 DOI: 10.1007/s00425-014-2133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
MAIN CONCLUSION The present study demonstrates the first direct evidence of the novel role of OsACA6 in providing Cd (2+) stress tolerance in transgenic tobacco by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Cadmium, a non-essential toxic heavy metal, interferes with the plant growth and development. It reaches the leaves through xylem and may become part of the food chain, thus causing detrimental effects to human health. Therefore, there is an urgent need to develop strategies for engineering plants for Cd(2+) tolerance and less accumulation. The members of P-type ATPases family transport metal ions including Cd(2+), and thus play important role an ion homeostasis. The present study elucidates the role of P-type 2B Ca(2+) ATPase (OsACA6) in Cd(2+) stress tolerance. The transcript levels of OsACA6 were up-regulated upon Cd(2+), Zn(2+) and Mn(2+) exposure. Transgenic tobacco expressing OsACA6 showed tolerance towards Cd(2+) stress as demonstrated by several physiological indices including root length, biomass, chlorophyll, malondialdehyde and hydrogen peroxide content. The roots of the transgenic lines accumulated more Cd(2+) as compared to shoot. Further, confocal laser scanning microscopy showed that Cd(2+) exposure altered Ca(2+) uptake in OsACA6 transgenic plants. OsACA6 expression in tobacco also protected the transgenic plants from oxidative stress by enhancing the activity of enzymatic (SOD, CAT, APX, GR) and non-enzymatic (GSH and AsA) antioxidant machinery. Transgenic lines also tolerated Zn(2+) and Mn(2+) stress; however, tolerance for these ions was not as significant as observed for Cd(2+) exposure. Thus, overexpression of OsACA6 confers Cd(2+) stress tolerance in transgenic lines by maintaining cellular ion homeostasis and modulating reactive oxygen species (ROS)-scavenging pathway. The results of the present study will help to develop strategies for engineering Cd(2+) stress tolerance in economically important crop plants.
Collapse
Affiliation(s)
- Devesh Shukla
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Ruta LL, Popa VC, Nicolau I, Danet AF, Iordache V, Neagoe AD, Farcasanu IC. Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett 2014; 588:3202-12. [PMID: 25017440 DOI: 10.1016/j.febslet.2014.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
The involvement of Ca(2+) in the response to high Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+) was investigated in Saccharomyces cerevisiae. The yeast cells responded through a sharp increase in cytosolic Ca(2+) when exposed to Cd(2+), and to a lesser extent to Cu(2+), but not to Mn(2+), Co(2+), Ni(2+), Zn(2+), or Hg(2+). The response to high Cd(2+) depended mainly on external Ca(2+) (transported through the Cch1p/Mid1p channel) but also on vacuolar Ca(2+) (released into the cytosol through the Yvc1p channel). The adaptation to high Cd(2+) was influenced by perturbations in Ca(2+) homeostasis. Thus, the tolerance to Cd(2+) often correlated with sharp Cd(2+)-induced cytosolic Ca(2+) pulses, while the Cd(2+) sensitivity was accompanied by the incapacity to rapidly restore the low cytosolic Ca(2+).
Collapse
Affiliation(s)
- Lavinia L Ruta
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Valentina C Popa
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Andrei F Danet
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Virgil Iordache
- University of Bucharest, Faculty of Biology, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Aurora D Neagoe
- University of Bucharest, Faculty of Biology, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Ileana C Farcasanu
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| |
Collapse
|
16
|
Kmetzsch L, Staats CC, Cupertino JB, Fonseca FL, Rodrigues ML, Schrank A, Vainstein MH. The calcium transporter Pmc1 provides Ca2+ tolerance and influences the progression of murine cryptococcal infection. FEBS J 2013; 280:4853-64. [PMID: 23895559 DOI: 10.1111/febs.12458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 01/14/2023]
Abstract
The Ca(2+)-calcineurin signaling pathway in the human fungal pathogen Cryptococcus neoformans is essential for adaptation to the host environment during infection. Calcium transporters regulate cytosolic calcium concentrations, providing Ca(2+) loading into storage organelles. The three calcium transporters that have been characterized in C. neoformans, Cch1, Eca1 and Vcx1, are required for fungal virulence, supporting a role for calcium-mediated signaling in cryptococcal pathogenesis. In the present study, we report the functional characterization of the putative vacuolar calcium ATPase Pmc1 in C. neoformans. Our results demonstrate that Pmc1 provides tolerance to high Ca(2+) concentrations. The double knockout of C. neoformans PMC1 and VCX1 genes impaired the intracellular calcium transport, resulting in a significant increase in cytosolic calcium levels. Furthermore, Pmc1 was essential for both the progression of pulmonary infection and brain colonization in mice, emphasizing the crucial role of calcium signaling and transport for cryptococcal pathogenesis.
Collapse
Affiliation(s)
- Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|