1
|
Kristofikova Z, Ricny J, Soukup O, Korabecny J, Nepovimova E, Kuca K, Ripova D. Inhibitors of Acetylcholinesterase Derived from 7-Methoxytacrine and Their Effects on the Choline Transporter CHT1. Dement Geriatr Cogn Disord 2018; 43:45-58. [PMID: 27988521 DOI: 10.1159/000453256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reversible acetylcholinesterase inhibitors are used in Alzheimer disease therapy. However, tacrine and its derivatives have severe side effects. Derivatives of the tacrine analogue 7-methoxytacrine (MEOTA) are less toxic. METHODS We evaluated new derivatives of 7-MEOTA (2 homodimers linked by 2 C4-C5 chains and 5 N-alkylated C4-C8 side chain derivatives) in vitro, using the rat hippocampal choline transporter CHT1. RESULTS Some derivatives were effective inhibitors of rat acetylcholinesterase and comparable with 7-MEOTA. All derivatives were able to inhibit CHT1, probably via quaternary ammonium, and this interaction could be involved in the enhancement of their detrimental side effects and/or in the attenuation of their promising effects. Under conditions of disrupted lipid rafts, the unfavorable effects of some derivatives were weakened. Only tacrine was probably able to stereospecifically interact with the naturally occurring amyloid-β isoform and to simultaneously stimulate CHT1. Some derivatives, when coincubated with amyloid β, did not influence CHT1. All derivatives also increased the fluidity of the cortical membranes. CONCLUSION The N-alkylated derivative of 7-MEOTA bearing from C4 side chains appears to be the most promising compound and should be evaluated in future in vivo research.
Collapse
Affiliation(s)
- Zdenka Kristofikova
- Alzheimer Disease Center, National Institute of Mental Health, Klecany, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
2
|
Janockova J, Zilecka E, Kasparkova J, Brabec V, Soukup O, Kuca K, Kozurkova M. Assessment of DNA-binding affinity of cholinesterase reactivators and electrophoretic determination of their effect on topoisomerase I and II activity. MOLECULAR BIOSYSTEMS 2017; 12:2910-20. [PMID: 27412811 DOI: 10.1039/c6mb00332j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe the biochemical properties and biological activity of a series of cholinesterase reactivators (symmetrical bisquaternary xylene-linked compounds, K106-K114) with ctDNA. The interaction of the studied derivatives with ctDNA was investigated using UV-Vis, fluorescence, CD and LD spectrometry, and electrophoretic and viscometric methods. The binding constants K were estimated to be in the range 1.05 × 10(5)-5.14 × 10(6) M(-1) and the percentage of hypochromism was found to be 10.64-19.28% (from UV-Vis titration). The used methods indicate that the studied samples are groove binders. Electrophoretic methods proved that the studied compounds clearly influence calf thymus Topo I (at 5 μM concentration, except for compounds K107, K111 and K114 which were effective at higher concentrations) and human Topo II (K110 partially inhibited Topo II effects even at 5 μM concentration) activity.
Collapse
Affiliation(s)
- J Janockova
- Institute of Chemistry, Department of Biochemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 040 01 Kosice, Slovak Republic. and Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - E Zilecka
- Institute of Chemistry, Department of Biochemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 040 01 Kosice, Slovak Republic.
| | - J Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - V Brabec
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - O Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - K Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - M Kozurkova
- Institute of Chemistry, Department of Biochemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 040 01 Kosice, Slovak Republic. and Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Gorecki L, Korabecny J, Musilek K, Nepovimova E, Malinak D, Kucera T, Dolezal R, Jun D, Soukup O, Kuca K. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006-2016). Expert Opin Ther Pat 2017; 27:971-985. [PMID: 28569609 DOI: 10.1080/13543776.2017.1338275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION organophosphorus compounds act as irreversible inhibitors of the vital enzyme acetylcholinesterase (AChE). this leads in the accumulation of acetylcholine (ACh) leading to cholinergic crisis and death. The main therapeutic approach is based on immediate administration of an ache reactivator as an antidote enabling recovery of the ache function. Areas covered: This review covers the development of AChE reactivators in order to introduce a new efficient drug that will overcome significant failures of common antidotes. Further options together with methods of detection are also discussed in order to assure a complete insight into the treatment of intoxication. Expert opinion: Since organophosphates belong to the most toxic chemical warfare agents, efficient antidotes are a matter of importance. The solution of how to limit the basic drawbacks of clinically used reactivators remained a spotlight for many researches worldwide. Recent strategies of the treatment of OP exposure bring us new possibilities which may overcome classic antidotes. The importance of detection of OP also has to be taken into consideration. Especially, with the fast spreading toxic effect when death can occur within minutes.
Collapse
Affiliation(s)
- Lukas Gorecki
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Kamil Musilek
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - David Malinak
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Physiology and Pathophysiology, Faculty of Medicine , University of Ostrava , Ostrava , Czech Republic
| | - Tomas Kucera
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Rafael Dolezal
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Daniel Jun
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Ondrej Soukup
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Kamil Kuca
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
4
|
Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol 2016; 90:2831-2859. [PMID: 27582056 DOI: 10.1007/s00204-016-1827-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023]
Abstract
Irreversible inhibition of acetylcholinesterase (AChE) by organophosphates leads to many failures in living organism and ultimately in death. Organophosphorus compounds developed as nerve agents such as tabun, sarin, soman, VX and others belong to the most toxic chemical warfare agents and are one of the biggest threats to the modern civilization. Moreover, misuse of nerve agents together with organophosphorus pesticides (e.g. malathion, paraoxon, chlorpyrifos, etc.) which are annually implicated in millions of intoxications and hundreds of thousand deaths reminds us of insufficient protection against these compounds. Basic treatments for these intoxications are based on immediate administration of atropine and acetylcholinesterase reactivators which are currently represented by mono- or bis-pyridinium aldoximes. However, these antidotes are not sufficient to ensure 100 % treatment efficacy even they are administered immediately after intoxication, and in general, they possess several drawbacks. Herein, we have reviewed new efforts leading to the development of novel reactivators and proposition of new promising strategies to design novel and effective antidotes. Structure-activity relationships and biological activities of recently proposed acetylcholinesterase reactivators are discussed and summarized. Among further modifications of known oximes, the main attention has been paid to dual binding site ligands of AChE as the current mainstream strategy. We have also discussed new chemical entities as potential replacement of oxime functional group.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Eugenie Nepovimova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Singh N, Karpichev Y, Tiwari AK, Kuca K, Ghosh KK. Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Soukup O, Jun D, Tobin G, Kuca K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. Arch Toxicol 2012. [PMID: 23179755 DOI: 10.1007/s00204-012-0977-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organophosphorus inhibitors (OP) of acetylcholinesterase (AChE) represent a group of highly toxic compounds. The treatment of OP intoxication is, however, insufficiently ensured. Currently, two main categories of drugs-anticholinergics and oxime reactivators- are employed as antidotes. Oximes have been reported to act at several levels of the cholinergic transmission, and among the non-reactivation effects, the interaction with cholinergic receptors stands out. This review addresses issues correlated with non-reactivating effects of oxime reactivators with a special focus on the muscarinic and nicotinic receptors, but involvement of other cholinergic structures such as AChE and choline uptake carriers are discussed too. It can be concluded that the oxime reactivators show a variation in their antagonistic effect on the muscarinic and nicotinic receptors, which is likely to be of significance in the treatment of OP poisoning. In vitro data reported oximes to exert higher efficacy on the muscarinic M2 subtype than on the AChE. However, this effect seemed to be subtype specific since the antagonistic M3 effect was lower. Also, and importantly, the antimuscarinic effect was larger than that on nicotinic receptors. Even though atropine showed a much higher muscarinic antagonism, it is supposed that non-reactivation properties of oxime reactivators play a significant role in the treatment of OP poisoning.
Collapse
Affiliation(s)
- O Soukup
- Biomedical Research Center, University Hospital of Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | | | | | | |
Collapse
|