1
|
Tian J, Wang X, Shi Q, Xiang X, Su C, Xie Y, Jin S, Huang R, Song C. Isolation and Purification of Kudinosides from Kuding Tea by Semi-Preparative HPLC Combined with MCI-GEL Resin. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191031153352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Kuding tea, a Traditional Chinese drink, has a history of thousands of years
in China. Triterpenoid saponins in Kuding tea are regarded as one of the major functional ingredients.
Objective:
The aim of this paper was to establish separation progress for the isolation and purification
of five triterpenoid saponins (kudinoside A, C, D, F, G) from Kuding tea.
Methods:
Nine types of resins, including seven macroporous resins and two MCI-GEL resins, were
firstly used for purifying triterpenoid saponins by the adsorption and desorption tests. Further dynamic
adsorption/desorption experiments were carried out to obtain the optimal parameters for the five
targeted saponins. Then the purification of five triterpenoid saponins (kudinoside A, C, D, F, G) was
completed by semi-preparative high-performance liquid chromatography (semi-pHPLC).
Results:
As of optimized results, the HP20SS MCI-GEL was selected as the optimal one. The data
also showed that 65.24 mg of refined extract including 7.04 mg kudinoside A, 3.52 mg kudinoside C,
4.04 mg kudinoside D, 4.13 mg kudinoside F, and 34.45 mg kudinoside G, could be isolated and purified
from 645.90 mg of crude extract in which the content of five saponins was 81.51% and the average
recovery reached 69.76%. The final contents of five saponins increased 6.91-fold as compared
to the crude extract.
Conclusion:
The established separation progress was highly efficient, making it a potential approach
for the large-scale production in the laboratory and providing several markers of triterpenoid saponins
for quality control of Kuding tea or its processing products.
Collapse
Affiliation(s)
- Ji Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xuanyuan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xingliang Xiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao Su
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yun Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Shuna Jin
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection; and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
2
|
Estévez J, Benabent M, Selva V, Mangas I, Sogorb MÁ, Del Rio E, Vilanova E. Cholinesterase and phenyl valerate-esterase activities sensitive to organophosphorus compounds in membranes of chicken brain. Toxicology 2018; 410:73-82. [PMID: 30176330 DOI: 10.1016/j.tox.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/31/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022]
Abstract
Some effects of organophosphorus compounds (OPs) esters cannot be explained by action on currently recognized targets acetylcholinesterase or neuropathy target esterase (NTE). In previous studies, in membrane chicken brain fractions, four components (EPα, EPβ, EPγ and EPδ) of phenyl valerate esterase activity (PVase) had been kinetically discriminated combining data of several inhibitors (paraoxon, mipafox, PMSF). EPγ is belonging to NTE. The relationship of PVase components and acetylcholine-hydrolyzing activity (cholinesterase activity) is studied herein. Only EPα PVase activity showed inhibition in the presence of acetylthiocholine, similarly to a non-competitive model. EPα is highly sensitive to mipafox and paraoxon, but is resistant to PMSF, and is spontaneously reactivated when inhibited with paraoxon. In this papers we shows that cholinesterase activities showed inhibition kinetic by PV, which does not fit with a competitive inhibition model when tested for the same experimental conditions used to discriminate the PVase components. Four enzymatic components (CP1, CP2, CP3 and CP4) were discriminated in cholinesterase activity in the membrane fraction according to their sensitivity to irreversible inhibitors mipafox, paraoxon, PMSF and iso-OMPA. Components CP1 and CP2 could be related to EPα as they showed interactions between substrates and similar inhibitory kinetic properties to the tested inhibitors.
Collapse
Affiliation(s)
- Jorge Estévez
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain
| | - Mónica Benabent
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain
| | - Verónica Selva
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain
| | - Iris Mangas
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain
| | - Miguel Ángel Sogorb
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain
| | - Eva Del Rio
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain
| | - Eugenio Vilanova
- University "Miguel Hernandez", Institute of Bioengineering, Unit of Toxicology, Elche, Spain.
| |
Collapse
|
3
|
Hydrolyzing activities of phenyl valerate sensitive to organophosphorus compounds paraoxon and mipafox in human neuroblastoma SH-SY5Y cells. Toxicology 2018; 406-407:123-128. [PMID: 30118792 DOI: 10.1016/j.tox.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
The molecular targets of best known neurotoxic effects associated to acute exposure to organophosphorus compounds (OPs) are serine esterases located in the nervous system, although there are other less known neurotoxic adverse effects associated with chronic exposure to OPs whose toxicity targets are still not identified. In this work we studied sensitivity to the non-neuropathic OP paraoxon and to the neuropathic OP mipafox of phenyl valerate esterases (PVases) in intact and lysed human neuroblastoma SH-SY5Y cells. The main objective was to discriminate different unknown pools of esterases that might be potential targets of chronic effects from those esterases already known and recognized as targets to these acute neurotoxicity effects. Two components of PVases of different sensitivities were discriminated for paraoxon in both intact and lysed cells; while the two components inhibitable by mipafox were found only for intact cells. A completely resistant component to paraoxon of around 30% was found in both intact and lysed cells; while a component of slightly lower amplitude (around 20%) completely resistant to mipafox was also found for both preparations (intact and lysed cells). The comparison of the results between the intact cells and the lysed cells suggests that the plasma membrane could act as a barrier that reduced the bioavailability of mipafox to PVases. This would imply that the discrimination of the different esterases should be made in lysed cells. However, those studies which aim to determine the physiological role of these esterases should be necessarily conducted in intact cultured cells.
Collapse
|
5
|
New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology 2017; 376:30-43. [DOI: 10.1016/j.tox.2016.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 01/01/2023]
|
6
|
Esterases hydrolyze phenyl valerate activity as targets of organophosphorus compounds. Chem Biol Interact 2016; 259:358-367. [DOI: 10.1016/j.cbi.2016.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/30/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022]
|
7
|
Acetylcholine-hydrolyzing activities in soluble brain fraction: Characterization with reversible and irreversible inhibitors. Chem Biol Interact 2016; 259:374-381. [PMID: 27507601 DOI: 10.1016/j.cbi.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/05/2016] [Accepted: 08/05/2016] [Indexed: 11/22/2022]
Abstract
Some effects of organophosphorus compounds (OPs) esters cannot be explained through actions on currently recognized targets acetylcholinesterase or neuropathy target esterase (NTE). In soluble chicken brain fraction, three components (Eα, Eβ and Eγ) of pheny lvalerate esterase activity (PVase) were kinetically discriminated and their relationship with acetylcholine-hydrolyzing activity (cholinesterase activity) were studied in previous works. In this work, four enzymatic components (CS1, CS2, CS3 and CS4) of cholinesterase activity have been discriminated in soluble fraction, according to their sensitivity to irreversible inhibitors mipafox, paraoxon, PMSF and iso-OMPA and to reversible inhibitors ethopropazine and BW284C51. Cholinesterase component CS1 can be related to the Eα component of PVase activity and identified as butyrylcholinesterase (BuChE). No association and similarities can be stablished among the other PVase component (Eβ and Eγ) with the other cholinesterase components (CS2, CS3, CS4). The kinetic analysis has allowed us to stablish a method for discriminating the enzymatic component based on a simple test with two inhibitors. It can be used as biomarker in toxicological studies and for monitoring these cholinesterase components during isolation and molecular identification processes, which will allow OP toxicity to be understood by a multi-target approach.
Collapse
|
8
|
XIE XM, SUN WY, HUANG JY, Polachi N, TONG L, SUN GX. Preparative High Performance Liquid Chromatography-based Multidimensional Chromatography and Its Application in Traditional Chinese Medicine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60946-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Zou D, Chen T, Chen C, Li H, Liu Y, Li Y. An Efficient Protocol for Preparation of Gallic Acid fromTerminalia bellirica(Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography. J Chromatogr Sci 2016; 54:1220-4. [DOI: 10.1093/chromsci/bmw054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/16/2023]
|
10
|
Butyrylcholinesterase identification in a phenylvalerate esterase-enriched fraction sensitive to low mipafox concentrations in chicken brain. Arch Toxicol 2016; 91:909-919. [DOI: 10.1007/s00204-016-1670-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|