1
|
Lu C, Yang W, Wang F, Li B, Liu Z, Liao H. Effects of intrauterine and post-natal exposure to air pollution on children's pneumonia: Key roles in different particulate matters exposure during critical time windows. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131837. [PMID: 37329598 DOI: 10.1016/j.jhazmat.2023.131837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Despite mounting evidence linked pneumonia with air pollution, it is unclear what main pollutant(s) exposure in which critical window(s) play a key role in pneumonia. OBJECTIVE To examine effects of intrauterine and post-natal exposure to air pollution on children's doctor-diagnosed pneumonia (DDP). METHODS A combination of cross-sectional and retrospective cohort study was conducted at Changsha, China during 2019-2020. Personal exposure to outdoor air pollutants at each child's home address was estimated using inverse distance weighted (IDW) method based on data from 10 air quality monitoring stations. Associations between personal air pollution exposure and DDP were evaluated. RESULTS Children's DDP was associated with intrauterine and post-natal exposure to PM2.5, PM2.5-10, and PM10, adjusted ORs (95% CI) of 1.17 (1.04-1.30), 1.09 (1.01-1.17), and 1.07 (1.00-1.14) for IQR increase in intrauterine exposure and 1.12 (1.02-1.22), 1.13 (1.06-1.21), and 1.28 (1.16-1.41) for post-natal exposure. Intrauterine PM2.5 exposure and post-natal PM10 exposure were associated with a higher risk of pneumonia. We identified the 2nd trimester, 3rd trimester, and first year as critical windows respectively for PM2.5, PM2.5-10, and PM10 exposure. Daytime exposure to traffic-related air pollution especially during early life increased DDP. CONCLUSION Intrauterine and post-natal exposure to particulate matters played a dominant role in children's DDP.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium; Occupational Safety and Public Health Group, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
| | - Bin Li
- School of Psychology, Central China Normal University, Wuhan 430070, China
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
2
|
Acute cytotoxicity, genotoxicity, and apoptosis induced by petroleum VOC emissions in A549 cell line. Toxicol In Vitro 2022; 83:105409. [DOI: 10.1016/j.tiv.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
|
3
|
Hu Z, An Y, Zhang W, Zhong Y, Chen Z, Wang B, Wang S, Wang Q, xiaotao Z, Wang X, Li X. An Investigation into the Effective Removal of volatile organic compounds Released from Wood Drying using Rare Metal‐Organic Frameworks. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zichu Hu
- Inner Mongolia Agricultural University CHINA
| | - Yuhong An
- Inner Mongolia Agricultural University CHINA
| | - Wanqi Zhang
- Inner Mongolia Agricultural University CHINA
| | - Yuan Zhong
- Inner Mongolia Agricultural University CHINA
| | - Zhangjing Chen
- Virginia Polytechnic Institute and State University UNITED STATES
| | - Boyun Wang
- Inner Mongolia Agricultural University CHINA
| | | | - Qiang Wang
- Inner Mongolia Agricultural University CHINA
| | - zhang xiaotao
- Inner Mongolia Agricultural University college of science No. 306, Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region 010000 Huhhot CHINA
| | - Ximing Wang
- Inner Mongolia Agricultural University CHINA
| | | |
Collapse
|
4
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
5
|
Impact of Nanocomposite Combustion Aerosols on A549 Cells and a 3D Airway Model. NANOMATERIALS 2021; 11:nano11071685. [PMID: 34199005 PMCID: PMC8304990 DOI: 10.3390/nano11071685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The use of nanomaterials incorporated into plastic products is increasing steadily. By using nano-scaled filling materials, thermoplastics, such as polyethylene (PE), take advantage of the unique properties of nanomaterials (NM). The life cycle of these so-called nanocomposites (NC) usually ends with energetic recovery. However, the toxicity of these aerosols, which may consist of released NM as well as combustion-generated volatile compounds, is not fully understood. Within this study, model nanocomposites consisting of a PE matrix and nano-scaled filling material (TiO2, CuO, carbon nano tubes (CNT)) were produced and subsequently incinerated using a lab-scale model burner. The combustion-generated aerosols were characterized with regard to particle release as well as compound composition. Subsequently, A549 cells and a reconstituted 3D lung cell culture model (MucilAir™, Epithelix) were exposed for 4 h to the respective aerosols. This approach enabled the parallel application of a complete aerosol, an aerosol under conditions of enhanced particle deposition using high voltage, and a filtered aerosol resulting in the sole gaseous phase. After 20 h post-incubation, cytotoxicity, inflammatory response (IL-8), transcriptional toxicity profiling, and genotoxicity were determined. Only the exposure toward combustion aerosols originated from PE-based materials induced cytotoxicity, genotoxicity, and transcriptional alterations in both cell models. In contrast, an inflammatory response in A549 cells was more evident after exposure toward aerosols of nano-scaled filler combustion, whereas the thermal decomposition of PE-based materials revealed an impaired IL-8 secretion. MucilAir™ tissue showed a pronounced inflammatory response after exposure to either combustion aerosols, except for nanocomposite combustion. In conclusion, this study supports the present knowledge on the release of nanomaterials after incineration of nano-enabled thermoplastics. Since in the case of PE-based combustion aerosols no major differences were evident between exposure to the complete aerosol and to the gaseous phase, adverse cellular effects could be deduced to the volatile organic compounds that are generated during incomplete combustion of NC.
Collapse
|
6
|
Khairul WM, Daud AI, Mohd Hanifaah NA, Arshad S, Razak IA, Zuki HM, Erben MF. Structural study of a novel acetylide-thiourea derivative and its evaluation as a detector of benzene. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Sun R, Zhang J, Wei H, Meng X, Ding Q, Sun F, Cao M, Yin L, Pu Y. Acetyl-l-carnitine partially prevents benzene-induced hematotoxicity and oxidative stress in C3H/He mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:108-113. [PMID: 28233701 DOI: 10.1016/j.etap.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Benzene is an environmental pollutant and occupational toxicant which induces hematotoxicity. Our previous metabonomics study suggested that acetyl-l-carnitine (ALCAR) decreased in the mouse plasma and bone marrow (BM) cells due to benzene exposure. In the present study, the topic on whether ALCAR influences hematotoxicity caused by benzene exposure was explored. Thirty-two male C3H/He mice were divided into four groups: control group (C: vehicle, oil), benzene group (150mg/kg body weight (b.w.) benzene), benzene+A1 group (150mg/kg b.w. benzene+100mg/kg b.w. ALCAR), and benzene+A2 group (150mg/kg b.w. benzene+200mg/kg b.w. ALCAR). Benzene was injected subcutaneously, and ALCAR was orally administrated via gavage once daily for 4 weeks consecutively. After the experimental period, the blood routine, BM cell number and frequency of hematopoietic stem/progenitor cell (HS/PC) were assessed. The mitochondrial membrane potential and ATP level were determined to evaluate the mitochondrial function. Reactive oxygen species (ROS), hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were also examined, and the comet assay was performed to measure oxidative stress. Results showed that ALCAR intervention can partially reduce the benzene-induced damage on BM and HS/PCs and can simultaneously alleviate the DNA damage by reducing benzene-induced H2O2, ROS, and MDA.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Haiyan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xing Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fengxia Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Meng Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Ferrero A, Esplugues A, Estarlich M, Llop S, Cases A, Mantilla E, Ballester F, Iñiguez C. Infants' indoor and outdoor residential exposure to benzene and respiratory health in a Spanish cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:486-494. [PMID: 28063708 DOI: 10.1016/j.envpol.2016.11.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Benzene exposure represents a potential risk for children's health. Apart from being a known carcinogen for humans (group 1 according to IARC), there is scientific evidence suggesting a relationship between benzene exposure and respiratory problems in children. But results are still inconclusive and inconsistent. This study aims to assess the determinants of exposure to indoor and outdoor residential benzene levels and its relationship with respiratory health in infants. Participants were 1-year-old infants (N = 352) from the INMA cohort from Valencia (Spain). Residential benzene exposure levels were measured inside and outside dwellings by means of passive samplers in a 15-day campaign. Persistent cough, low respiratory tract infections and wheezing during the first year of life, and covariates (dwelling traits, lifestyle factors and sociodemographic data) were obtained from parental questionnaires. Multiple Tobit regression and logistic regression models were performed to assess factors associated to residential exposure levels and health associations, respectively. Indoor levels were higher than outdoor ones (1.46 and 0.77 μg/m3, respectively; p < 0.01). A considerable percentage of dwellings, 42% and 21% indoors and outdoors respectively, surpassed the WHO guideline of 1.7 μg/m3 derived from a lifetime risk of leukemia above 1/100 000. Monitoring season, maternal country of birth and parental tobacco consumption were associated with residential benzene exposure (indoor and outdoors). Additionally, indoor levels were associated with mother's age and type of heating, and outdoor levels were linked with zone of residence and distance from industrial areas. After adjustment for confounding factors, no significant associations were found between residential benzene exposure levels and respiratory health in infants. Hence, our study did not support the hypothesis for the benzene exposure effect on respiratory health in children. Even so, it highlights a public health concern related to the personal exposure levels, since a considerable number of children surpassed the abovementioned WHO guideline for benzene exposure.
Collapse
Affiliation(s)
- Amparo Ferrero
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain.
| | - Ana Esplugues
- Faculty of Nursing and Chiropody, Universitat de València, Av. Blasco Ibáñez, 13, 46010 Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Amparo Cases
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Enrique Mantilla
- Center for Mediterranean Environmental Studies, (CEAM), Parque Tecnológico, Charles R. Darwin, 14, 46980 Paterna, Valencia, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain; Faculty of Nursing and Chiropody, Universitat de València, Av. Blasco Ibáñez, 13, 46010 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I, Universitat de València, Avenida de Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro, 3-5, 28029, Madrid, Spain
| |
Collapse
|
9
|
Kim SY, Son BS, Park HJ, Oh SH, Lee JH, Suh MH, Park MK. Impact of environmental volatile organic compounds on otitis media in children: Correlation between exposure and urinary metabolites. Int J Pediatr Otorhinolaryngol 2017; 93:157-162. [PMID: 28109489 DOI: 10.1016/j.ijporl.2016.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Volatile organic compounds (VOCs) induce inflammatory responses. Tobacco smoke contains numerous VOCs and is a risk factor for otitis media effusion (OME); however, no previous studies have investigated the association between VOCs and OME. OBJECTIVES We used urinary metabolites and exposure to environmental risk factors to investigate the association between VOC and polycyclic aromatic hydrocarbon exposure and recurrent OME in children. METHODS Children with recurrent OME who visited the Otorhinolaryngology Department of Seoul National University Hospital between November 2014 and June 2015 were prospectively enrolled in the study. Recurrent OME was defined as more than two OME episodes over a 6-month period lasting longer than 2 months. The control group consisted of children without OME in the last year. Demographic information, including age, sex, and previous medical history was obtained, and endoscopic examinations of the tympanic membrane were performed. Urinary concentrations of 1-hydroxypyrene, 2-naphthol, hippuric acid, trans, trans-muconic acid (t,t-MA), mandelic acid, phenyl glyoxylic acid, and methyl hippuric acid were analyzed using high-performance liquid chromatography/tandem mass spectroscopy. Environmental factors assessed included house type, age, renovations, the presence of furniture <6 months old, proximity to a road, and exposure to passive smoking. RESULTS We enrolled 11 children with OME and 39 controls. Age and sex did not differ between groups. Exposure to passive smoking was significantly more common in the OME group than in the controls (P < 0.001). Urinary concentrations of t.t.-MA were significantly higher in the OME group (126.33 μg/g cr) than in controls (52.661 μg/g cr; P = 0.003). Other metabolites including 1-hydroxypyrene, 2-naphthol, hippuric acid, mandelic acid, phenyl glyoxylic acid, and methyl hippuric acid did not demonstrated significant relation with the OME. CONCLUSIONS Levels of t,t-MA, a biomarker of benzene exposure, were significantly higher in the OME group than in controls. Passive smoking was significantly more common in the OME group. Our findings suggest that high t,t-MA levels which were probably originated from passive smoking and other pollutants could be indicative OME in children.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Bu-Soon Son
- Department of Environment Health Science, Soonchunhyang University, South Korea
| | - Hee-Jin Park
- Department of Environment Health Science, Soonchunhyang University, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Myung-Hwan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Galindo N, Varea M, Gil-Moltó J, Yubero E. BTX in urban areas of eastern Spain: a focus on time variations and sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18267-18276. [PMID: 27272924 DOI: 10.1007/s11356-016-7019-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Seasonal and daily cycles of BTX were studied in a non-industrialized city (Alicante) and an urban area near an oil refinery plant (Castellón) in order to evaluate the influence of different sources on time variations. Lower levels were observed in summer than in winter at both locations due to higher dispersion conditions and photochemical removal of BTX during the summer season. Daily patterns showed seasonal differences and were controlled by traffic emissions and the evolution of the mixing layer height, with no influence of the petroleum refinery plant in the city of Castellón. The results of the conditional bivariate probability function suggest that the influence of this source on BTX concentrations was limited to point impacts. At both sites, benzene exhibited a different behavior from toluene and xylenes, most likely due to its significantly lower chemical reactivity.
Collapse
Affiliation(s)
- Nuria Galindo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Montse Varea
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Juan Gil-Moltó
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Eduardo Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| |
Collapse
|
11
|
Li X, Zhang C, Bian Q, Gao N, Zhang X, Meng Q, Wu S, Wang S, Xia Y, Chen R. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles. Nanotoxicology 2016; 10:957-69. [PMID: 26830206 DOI: 10.3109/17435390.2016.1149632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity.
Collapse
Affiliation(s)
- Xiaobo Li
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Chengcheng Zhang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Qian Bian
- b Department of Toxicology and Function Assessment , Jiangsu Provincial Center for Disease Prevention and Control , Nanjing , China
| | - Na Gao
- c Institute of Bioinformatics, Heinrich Heine University , Dusseldorf , Germany
| | - Xin Zhang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Qingtao Meng
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Shenshen Wu
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Shizhi Wang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Yankai Xia
- d Key Laboratory of Modern Toxicology of Ministry of Education , School of Public Health, Nanjing Medical University , Nanjing , China , and
| | - Rui Chen
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China .,e State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China
| |
Collapse
|