1
|
Zhong N, Zhuang W, Huang Q, Wang Q, Jin W. Apatinib inhibits the growth of small cell lung cancer via a mechanism mediated by VEGF, PI3K/Akt and Ki-67/CD31. J Cell Mol Med 2021; 25:10039-10048. [PMID: 34590406 PMCID: PMC8572765 DOI: 10.1111/jcmm.16926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022] Open
Abstract
This study aimed to investigate the anti‐tumour effect of apatinib on extensive‐stage small cell lung cancer (SCLC) and elucidate the associated mechanisms. NCI‐H345 cells were selected as model cells because of high expression of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2) and phosphorylated‐VEGFR2 (pVEGFR2). Cells were exposed to recombinant human VEGF (rhVEGF) and apatinib. Cells were then divided into eight groups, namely, control, rhVEGF, apatinib, rhVEGF+apatinib, serum‐free medium (SM), SM+rhVEGF, SM+apatinib and SM+rhVEGF+apatinib. In comparison with the control group, cell proliferation in vitro in apatinib, SM, SM+apatinib and SM+rhVEGF+apatinib groups was inhibited, particularly in SM+apatinib group. The effect of apatinib on tumour growth in vivo was investigated using a mouse xenograft tumour model. In comparison with the control group, tumour sizes were reduced in apatinib‐treated group on days 34 and 37. Immunohistochemical and immunofluorescence staining revealed that VEGF, pVEGFR2, PI3K, AKT, p‐ERK1/2, Ki‐67 and CD31 in the tumour cells of apatinib‐treated group were downregulated compared with control group. Haematoxylin and eosin staining revealed that apatinib promoted the necrosis of SCLC cells in vivo. In conclusion, apatinib inhibited the growth of SCLC cells by downregulating the expression of VEGF, pVEGFR2, p‐PI3K, p‐AKT, p‐ERK1/2, Ki‐67 and CD31.
Collapse
Affiliation(s)
- Ning Zhong
- Department of Geriatric Oncology, Jiangxi Provincial Tumor Hospital, Nanchang, China
| | - Wei Zhuang
- Jiangxi Health Vocational College, Nanchang, China
| | - Qian Huang
- Department of Abdominal Surgery, Jiangxi Provincial Tumor Hospital, Nanchang, China
| | - Qiang Wang
- Department of Oncology, the People's Hospital of Ruijin City, Ruijin, China
| | - Wenjian Jin
- Department of Geriatric Oncology, Jiangxi Provincial Tumor Hospital, Nanchang, China
| |
Collapse
|
2
|
Song H, Lee YY, Park J, Lee Y. Korean Red Ginseng suppresses bisphenol A-induced expression of cyclooxygenase-2 and cellular migration of A549 human lung cancer cell through inhibition of reactive oxygen species. J Ginseng Res 2021; 45:119-125. [PMID: 33437163 PMCID: PMC7790882 DOI: 10.1016/j.jgr.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a natural product with antiinflammatory and anticarcinogenic effects. We have previously reported that the endocrine-disrupting compound bisphenol A (BPA)-induced cyclooxygenase-2 (COX-2) via nuclear translocation of nuclear factor-kappa B (NF-κB) and activation of mitogen-activated protein kinase and promoted the migration of A549. Here, in this study, we assessed the protective effect of KRG on the BPA-induced reactive oxygen species (ROS) and expression of COX-2 and matrix metalloproteinase-9 (MMP-9) in A549 cells. METHODS The effects of KRG on the upregulation of ROS production and COX-2 and MMP-9 expression by BPA were evaluated by fluorescence-activated cell sorting (FACs) analysis, quantitative reverse transcription polymerase chain reaction, and western blotting. Antimigration ability by KRG was evaluated by migration assay in A549 cells. RESULTS KRG significantly suppressed the BPA-induced COX-2, the activity of NF-κB, the production of ROS, and the migration of A549 cells. These effects led to the downregulation of the expression of MMP-9. CONCLUSIONS Overall, our results suggest that KRG exerts an antiinflammatory effect on BPA-treated A549 cells via the suppression of ROS and downregulation of NF-κB activation and COX-2 expression which leads to a decrease in cellular migration and MMP-9 expression. These results provide a new possible therapeutic application of KRG to protect BPA-induced possible inflammatory disorders.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Adesanoye OA, Abolaji AO, Faloye TR, Olaoye HO, Adedara AO. Luteolin-Supplemented diets ameliorates Bisphenol A-Induced toxicity in Drosophila melanogaster. Food Chem Toxicol 2020; 142:111478. [PMID: 32504732 DOI: 10.1016/j.fct.2020.111478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is an industrial chemical used in the production of various plastic materials. It is associated with reproductive, immunological and neurological disorders. Luteolin, a flavonoid found in fruits and vegetables, possesses anti-oxidative, anti-inflammatory and free radical scavenging properties. Here, we carried out studies to ascertain if Luteolin would ameliorate BPA-induced toxicity in Drosophila melanogaster. Firstly, flies were treated separately with Luteolin (0, 50, 100, 150 and 300 mg/kg diet) and BPA (0, 0.01, 0.05 and 0.1 mM) for 28 days survival assessments. Consequently, Luteolin (150 and 300 mg/kg diet) and/or BPA (0.05 mM) were exposed to D. melanogaster for 7 days for the evaluation of nitric oxide level, eclosion rate, viability assay, histology of fat body, antioxidant (Glutathione-S-transferase, catalase and total thiol), oxidative stress (hydrogen peroxide) and behavioural (negative geotaxis and acetylcholinesterase) markers. The results showed that BPA induced antioxidant-oxidative stress imbalance and behavioural deficit in flies. Luteolin increased survival rate and augmented antioxidant markers in flies. Importantly, Luteolin ameliorated BPA-induced degeneration in the fat body around the rostral, thorax and abdominal regions, oxidative stress, behavioural deficit, reduction in cell viability and eclosion rate of D. melanogaster (p < 0.05). Overall, this study offered further insights on the antioxidative and chemopreventive properties of Luteolin against BPA-induced toxicity.
Collapse
Affiliation(s)
- Omolola A Adesanoye
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Amos O Abolaji
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Tolulope R Faloye
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Hannah O Olaoye
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adeola O Adedara
- Drosophila Laboratory, Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
4
|
Luo X, Li Z, Zhao J, Deng Y, Zhong Y, Zhang M. Fyn gene silencing reduces oligodendrocytes apoptosis through inhibiting ERK1/2 phosphorylation in epilepsy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:298-304. [PMID: 31852295 DOI: 10.1080/21691401.2019.1671428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the effect of Fyn gene silencing on the apoptosis of oligodendrocytes (OLs) in epileptic model in vitro and the involved mechanism. Primary oligodendrocyte pro-genitor cells (OPCs) were separated from rats and differentiated to OLs. Immunofluorescent labeling showed positive expression of A2B5 in OPCs and Olig2 in OLs, suggesting the successful separation of OPCs and OLs. Three Fyn siRNAs (si-Fyn) and Fyn siRNA negative control (NC) were transfected into OLs. Western blot showed that among three si-Fyn groups, si-Fyn3 caused the lowest Fyn expression, so si-Fyn3 was chosen for following experiment. Cells were divided into four groups: Control, Model, NC and si-Fyn. In the Model group, cells were cultured in Mg-free extracellular fluid for 3 h. The morphology of control cells was normal. However, the migration of neurons, the aggregation of cell bodies and the "grid-like" changes of neural networks were observed in the model cells. OLs apoptosis in various groups was assessed by flow cytometry. Expression of Fyn, ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in OLs of various groups was evaluated by western blot. Compared with the Control group, the apoptotic rates, the Fyn expression and p-ERK1/2/ERK1/2 ratio in the Model and NC groups increased significantly (p < .05). However, the apoptotic rate, the Fyn expression and p-ERK1/2/ERK1/2 ratio in the si-Fyn group were remarkably smaller than those in the Model group (p < .05). In conclusion, Fyn gene silencing reduced the apoptosis of OLs through inhibiting the phosphorylation of ERK1/2 in epileptic model.
Collapse
Affiliation(s)
- Xinming Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengyu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuqin Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Li Z, Lu Q, Ding B, Xu J, Shen Y. Bisphenol A promotes the proliferation of leiomyoma cells by GPR30‐EGFR signaling pathway. J Obstet Gynaecol Res 2019; 45:1277-1285. [DOI: 10.1111/jog.13972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zemin Li
- School of MedicineSoutheast University Nanjing China
| | - Qing Lu
- School of MedicineSoutheast University Nanjing China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| | - Jingyun Xu
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| |
Collapse
|
6
|
Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:60-71. [PMID: 28181297 PMCID: PMC5458620 DOI: 10.1002/em.22072] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. Environ. Mol. Mutagen. 58:60-71, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie R Gassman
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, 36604-1405
| |
Collapse
|