1
|
Chen YY, Lin TW, Li IC, Tsung L, Hou CH, Yang CY, Li TJ, Chen CC. A pilot pharmacokinetic and Metabolite identification study of Erinacine A in a Single landrace pig model. Heliyon 2024; 10:e37850. [PMID: 39315194 PMCID: PMC11417322 DOI: 10.1016/j.heliyon.2024.e37850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Erinacine A has been proven to have the ability to protect nerves and have the benefit of neurohealth. However, the pharmacokinetic and metabolites study of erinacine A in pigs, whose physiology and anatomy are similar to humans, have not been reported. In this study, 5 mg/kg of erinacine A was intravenously administered to the landrace pig. Blood, cerebrospinal fluid, and brain tissue samples were collected and analyzed by HPLC-QQQ/MS and UPLC-QTOF/MS. The results indicated the following pharmacokinetic parameters in plasma samples: with an area under the plasma concentration versus time curve (AUC) were 38.02 ± 0.03 mg∙min/L (AUC0-60) and 43.60 ± 0.06 mg∙min/L (AUC0-∞), clearance (CL) was 0.11 ± 0.00 L/min∙kg, volume of distribution (Vd) was 4.24 ± 0.00 L/kg, and terminal half-life (T1/2β) was 20.85 ± 0.03 min. In the cerebrospinal fluid samples, erinacine A was detected after 15 min and the highest concentration (5.26 ± 0.58 μg/L) was observed at 30 min. In the brain tissue sample, 77.45 ± 0.58 μg/L of erinacine A was found. In the study of metabolites, there were 6 identical metabolites in plasma and brain tissue. To our surprise, erinacine B was found to be the metabolite of erinacine A, and its concentration increased over time as erinacine A was metabolized. In summary, this study is the first to demonstrate that erinacine A can be found in the cerebrospinal fluid of landrace pigs. Additionally, the metabolite identification of erinacine A in landrace pigs is also investigated.
Collapse
Affiliation(s)
- Ying-Yu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan
| | - Lin Tsung
- GLP Animal Laboratory, Agricultural Technology Research Institute, Hsinchu 300, Taiwan
| | - Chun-Hsiang Hou
- GLP Animal Laboratory, Agricultural Technology Research Institute, Hsinchu 300, Taiwan
| | - Chi-Yu Yang
- GLP Animal Laboratory, Agricultural Technology Research Institute, Hsinchu 300, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| |
Collapse
|
2
|
Brandon AM, Baginski SR, Peet C, Dugard P, Green H, Sutcliffe OB, Daéid NN, Nisbet LA, Read KD, McKenzie C. Log D 7.4 and plasma protein binding of synthetic cannabinoid receptor agonists and a comparison of experimental and predicted lipophilicity. Drug Test Anal 2024; 16:1012-1025. [PMID: 38062938 DOI: 10.1002/dta.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 10/17/2024]
Abstract
The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.
Collapse
Affiliation(s)
- Andrew M Brandon
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Steven R Baginski
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Caroline Peet
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
- Debiopharm, Lausanne, Switzerland
| | - Pat Dugard
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Lorna A Nisbet
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| |
Collapse
|
3
|
Fujiwara R, Journey M, Al-Doori F, Bell P, Judge B, Miracle K, Ito K, Jones S. Potential neonatal toxicity of new psychoactive substances. Pharmacol Ther 2023; 248:108468. [PMID: 37290575 DOI: 10.1016/j.pharmthera.2023.108468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Cannabis, cocaine, 3,4-methylenedioxymethamphetamine, and lysergic acid diethylamide are psychoactive substances with a significant increase in consumption during the 21st century due to their popularity in medicinal and recreational use. New psychoactive substances (NPSs) mimic established psychoactive substances. NPSs are known as being natural and safe to consumers; however, they are neither natural nor safe, causing severe adverse reactions, including seizures, nephrotoxicity, and sometimes death. Synthetic cannabinoids, synthetic cathinones, phenethylamines, and piperazines are all examples of NPSs. As of January 2020, nearly 1000 NPSs have become documented. Due to their low cost, ease of availability, and difficulty of detection, misuse of NPSs has become a familiar and growing problem, especially in adolescents and young adults in the past decade. The use of NPSs is associated with higher risks of unplanned sexual intercourse and pregnancy. As many as 4 in 100 women seeking treatment for substance abuse are pregnant or nursing. Animal studies and human clinical case reports have shown that exposure to certain NPSs during lactation periods has toxic effects on neonates, increasing various risks, including brain damage. Nevertheless, neonatal toxicity effects of NPSs are usually unrecognized and overlooked by healthcare professionals. In this review article, we introduce and discuss the potential neonatal toxicity of NPSs, emphasizing synthetic cannabinoids. Utilizing the established prediction models, we identify synthetic cannabinoids and their highly accumulative metabolites in breast milk.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Megan Journey
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Fatimah Al-Doori
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paris Bell
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Brahmjot Judge
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kamille Miracle
- College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Sabrina Jones
- Department of Physics, University of Arkansas Fayetteville, Fayetteville, AR, USA
| |
Collapse
|
4
|
Wang Z, Leow EYQ, Moy HY, Chan ECY. Advances in urinary biomarker research of synthetic cannabinoids. Adv Clin Chem 2023; 115:1-32. [PMID: 37673518 DOI: 10.1016/bs.acc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
New psychoactive substances (NPS) are chemical compounds designed to mimic the action of existing illicit recreational drugs. Synthetic cannabinoids (SCs) are a subclass of NPS which bind to the cannabinoid receptors, CB1 and CB2, and mimic the action of cannabis. SCs have dominated recent NPS seizure reports worldwide. While urine is the most common matrix for drug-of-abuse testing, SCs undergo extensive Phase I and Phase II metabolism, resulting in almost undetectable parent compounds in urine samples. Therefore, the major urinary metabolites of SCs are usually investigated as surrogate biomarkers to identify their consumption. Since seized urine samples after consuming novel SCs may be unavailable in a timely manner, human hepatocytes, human liver microsomes and human transporter overexpressed cell lines are physiologically-relevant in vitro systems for performing metabolite identification, metabolic stability, reaction phenotyping and transporter experiments to establish the disposition of SC and its metabolites. Coupling these in vitro experiments with in vivo verification using limited authentic urine samples, such a two-pronged approach has proven to be effective in establishing urinary metabolites as biomarkers for rapidly emerging SCs.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Eric Yu Quan Leow
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Nordmeier F, Doerr AA, Potente S, Walle N, Laschke MW, Menger MD, Schmidt PH, Meyer MR, Schaefer N. Are the (New) Synthetic Opioids U-47700, Tramadol and Their Main Metabolites Prone to Time-Dependent Postmortem Redistribution?-A Systematic Study Using an In Vivo Pig Model. J Anal Toxicol 2023; 47:236-244. [PMID: 36242582 DOI: 10.1093/jat/bkac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
The interpretation of analytical results in forensic postmortem (PM) cases often poses a great challenge, in particular, due to possible PM redistribution (PMR) phenomena. In terms of new synthetic opioids, such data are usually not available and, if so, they are from case reports without the exact knowledge of dose, user habits, time of consumption or PM interval (PMI). Hence, a controlled toxicokinetic pig study was performed allowing the examination of PM tissue distribution and possible PMR of U-47700, tramadol and the main metabolites N-desmethyl-U-47700 and O-desmethyltramadol (ODT). For this purpose, 12 domestic pigs received an intravenous dose of 100 µg/kg body weight (BW) U-47700 or 1,000 µg/kg BW tramadol, respectively. The animals were put to death with T61 8 h after administration, and relevant organs, tissues and body fluids were sampled. Subsequently, the animals were stored at room temperature (RT), and the samples were taken again after 24, 48, and 72 h PM. Following homogenization and solid-phase extraction, quantification was performed applying a standard addition approach and liquid chromatography-tandem mass spectrometry. Only low-to-moderate concentration changes of U-47700, tramadol and their main metabolites were found in the analyzed tissue specimens and body fluids during storage at RT depending on the chosen PMI. On the contrary, a remarkable concentration increase of tramadol was observed in the liver tissue. These findings indicate that both synthetic opioids and their main metabolites are only slightly prone to PMR and central blood might be the matrix of choice for quantification of these substances.
Collapse
Affiliation(s)
| | - Adrian A Doerr
- Institute of Legal Medicine, Saarland University, Homburg 66421, Germany
| | - Stefan Potente
- Institute of Legal Medicine, Saarland University, Homburg 66421, Germany
| | - Nadja Walle
- Institute of Legal Medicine, Saarland University, Homburg 66421, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Homburg 66421, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg 66421, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Homburg 66421, Germany
| |
Collapse
|
6
|
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP. Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol 2023; 63:187-209. [PMID: 35914767 DOI: 10.1146/annurev-pharmtox-031122-113758] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.
Collapse
Affiliation(s)
- Rita Roque-Bravo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rafaela Sofia Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rui F Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; , .,Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, IUCS-CESPU, Gandra, Portugal
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| |
Collapse
|
7
|
DETERMINATION OF FAMPROFAZONE, AMPHETAMINE AND METHAMPHETAMINE IN LIVER SAMPLES USING ENZYMATIC CELL DISPERSION AND SPE-LC-ESI-MS. J Pharm Biomed Anal 2022; 217:114821. [DOI: 10.1016/j.jpba.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
8
|
Monti MC, Zeugin J, Koch K, Milenkovic N, Scheurer E, Mercer-Chalmers-Bender K. Adulteration of low-THC products with synthetic cannabinoids: Results from drug checking services. Drug Test Anal 2022; 14:1026-1039. [PMID: 34997693 PMCID: PMC9305195 DOI: 10.1002/dta.3220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022]
Abstract
Since late 2019, low‐delta‐9‐tetrahydrocannabinol (THC) preparations adulterated with synthetic cannabinoids (SCs) have been frequently observed in Switzerland. The unawareness of users concerning the presence of SCs and the typically higher potency and toxicity of SCs, when compared with THC, can result in increased health risks. In Switzerland, low‐THC (<1%) cannabis products, except hashish, are legal. These products can act as carrier materials for SCs. In this study, cannabis samples and user self‐reports received through three drug checking services were collected and analysed, to gain deeper insight into this new phenomenon. Samples were collected from January 2020 to July 2021. Liquid chromatography coupled with high‐resolution mass spectrometry was used for the qualitative screening and semi‐quantification of SCs, while gas chromatography with flame ionization detector was applied for the quantification of THC and cannabidiol levels. Reported adverse effects were compared between users who consumed adulterated (SC‐group) and non‐adulterated (THC‐group) products. Of a total 94 samples, 50% contained up to three different SCs. MDMB‐4en‐PINACA was most often detected. All adulterated cannabis flowers contained ≤1% THC. Adulterated hashish also typically presented low THC‐levels (median: 0.8%). The SC‐group was associated with higher numbers of adverse events (p = 0.041). Furthermore, psychologic (p = 0.0007) and cardiologic (p = 0.020) adverse effects were more profound in the SC‐group than in the THC‐group. Drug checking services enabled the timely detection and monitoring of new and potentially dangerous trends. Furthermore, due to user‐reports, additional valuable information was gained on adverse events associated with the consumption of novel SCs.
Collapse
Affiliation(s)
- Manuela Carla Monti
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jill Zeugin
- Addiction Support - Region Basel (Suchthilfe Region Basel), Basel, Switzerland
| | - Konrad Koch
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Natasa Milenkovic
- Addiction Services (Abteilung Sucht), Health Department Kanton Basel-Stadt, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | |
Collapse
|
9
|
Toxicokinetics of U-47700, tramadol, and their main metabolites in pigs following intravenous administration: is a multiple species allometric scaling approach useful for the extrapolation of toxicokinetic parameters to humans? Arch Toxicol 2021; 95:3681-3693. [PMID: 34604914 PMCID: PMC8536616 DOI: 10.1007/s00204-021-03169-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
New synthetic opioids (NSOs) pose a public health concern since their emergence on the illicit drug market and are gaining increasing importance in forensic toxicology. Like many other new psychoactive substances, NSOs are consumed without any preclinical safety data or any knowledge on toxicokinetic (TK) data. Due to ethical reasons, controlled human TK studies cannot be performed for the assessment of these relevant data. As an alternative animal experimental approach, six pigs per drug received a single intravenous dose of 100 µg/kg body weight (BW) of U-47700 or 1000 µg/kg BW of tramadol to evaluate whether this species is suitable to assess the TK of NSOs. The drugs were determined in serum and whole blood using a fully validated method based on solid-phase extraction and LC–MS/MS. The concentration–time profiles and a population (pop) TK analysis revealed that a three-compartment model best described the TK data of both opioids. Central volumes of distribution were 0.94 L/kg for U-47700 and 1.25 L/kg for tramadol and central (metabolic) clearances were estimated at 1.57 L/h/kg and 1.85 L/h/kg for U-47700 and tramadol, respectively. The final popTK model parameters for pigs were upscaled via allometric scaling techniques. In comparison to published human data, concentration–time profiles for tramadol could successfully be predicted with single species allometric scaling. Furthermore, possible profiles for U-47700 in humans were simulated. The findings of this study indicate that unlike a multiple species scaling approach, pigs in conjunction with TK modeling are a suitable tool for the assessment of TK data of NSOs and the prediction of human TK data.
Collapse
|
10
|
Doerr AA, Nordmeier F, Walle N, Laschke MW, Menger MD, Schmidt PH, Schaefer N, Meyer MR. Can a Recently Developed Pig Model Be Used for In Vivo Metabolism Studies of 7-Azaindole-Derived Synthetic Cannabinoids? A Study Using 5F-MDMB-P7AICA. J Anal Toxicol 2021; 45:593-604. [PMID: 32886783 DOI: 10.1093/jat/bkaa122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
New psychoactive substances (NPS), especially synthetic cannabinoids (SC) remain a public health concern. Due to ethical reasons, systematic controlled human studies to elucidate their toxicodynamics and/or toxicokinetics are usually not possible. However, such knowledge is necessary, for example, for determination of screening targets and interpretation of clinical and forensic toxicological data. In the present study, the feasibility of the pig model as an alternative for human in vivo metabolism studies of SC was investigated. For this purpose, the metabolic pattern of the SC methyl-2-{[1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]amino}-3,3-dimethylbutanoate (5F-MDMB-P7AICA) was elucidated in pig urine following inhalative administration (dosage: 200 µg/kg of body weight). The results were compared with human and pig liver microsomal assays and literature. In addition, different incubations with isolated cytochrome-P450 (CYP) monooxygenases were conducted to identify the involved isozymes. In total, nine phase I and three phase II metabolites were identified in pig urine. The most abundant reactions were ester hydrolysis, ester hydrolysis combined with glucuronidation and ester hydrolysis combined with hydroxylation at the tert-butyl moiety. The parent compound was only found up to 1 h after administration in pig urine. The metabolite formed after hydroxylation and glucuronidation was detectable for 2 h, the one formed after ester hydrolyzation and defluorination for 4 h after administration. All other metabolites were detected during the whole sampling time. The most abundant metabolites were also detected using both microsomal incubations and monooxygenase screenings revealed that CYP3A4 catalyzed most reactions. Finally, pig data showed to be in line with published human data. To conclude, the main metabolites recommended in previous studies as urinary targets were confirmed by using pig urine. The used pig model seems therefore to be a suitable alternative for in vivo metabolism studies of 7-azaindole-derived SC.
Collapse
Affiliation(s)
- Adrian A Doerr
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | | | - Nadja Walle
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
11
|
Nordmeier F, Doerr AA, Potente S, Walle N, Laschke MW, Menger MD, Schmidt PH, Meyer MR, Schaefer N. Perimortem Distribution of U-47700, Tramadol and their Main Metabolites in pigs Following Intravenous Administration. J Anal Toxicol 2021; 46:479-486. [PMID: 33950247 DOI: 10.1093/jat/bkab044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of a decreasing number of new releases, New Synthetic Opioids (NSO) are gaining increasing importance in postmortem (PM) forensic toxicology. For the interpretation of analytical results, toxicokinetic (TK) data, e.g. on tissue distribution, are helpful. Concerning NSO, such data are usually not available due to the lack of controlled human studies. Hence, a controlled TK study using pigs was carried out and the tissue distribution of U-47700 and tramadol as reference was examined. Twelve pigs received an intravenous dose of 100 µg/kg body weight (BW) U-47700 or 1000 µg/kg BW tramadol, respectively. Eight hours after administration, the animals were put to death with T61. Relevant organs, body fluids and tissues were sampled. After homogenization and solid-phase extraction, quantification was performed applying standard addition and liquid chromatography-tandem mass spectrometry. At the time of death, the two parent compounds were determined in all analyzed specimens. Regarding U-47700, concentrations were highest in duodenum content, bile fluid and adipose tissue (AT). Concerning tramadol, next to bile fluid and duodenum content, highest concentrations were determined in the lung. Regarding the metabolites, N-desmethyl-U-47700 and O-desmethyltramadol (ODT) were detected in all analyzed specimens except for AT (ODT). Higher metabolite concentrations were found in specimens involved in metabolism. N-desmethyl-U-47700 showed much higher concentrations in routinely analyzed organs (lung, liver, kidney) than U-47700. To conclude, besides the routinely analyzed specimens in PM toxicology, AT, bile fluid and duodenum content could serve as alternative matrices for blood, urine or standard specimens such as kidney or liver. In case of U-47700, quantification of the main metabolite N-desmethyl-U-47700 is highly recommendable.
Collapse
Affiliation(s)
| | - Adrian A Doerr
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Stefan Potente
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Nadja Walle
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
12
|
Recent trends in drugs of abuse metabolism studies for mass spectrometry-based analytical screening procedures. Anal Bioanal Chem 2021; 413:5551-5559. [PMID: 33792746 PMCID: PMC8410689 DOI: 10.1007/s00216-021-03311-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
The still increasing number of drugs of abuse, particularly the so-called new psychoactive substances (NPS), poses an analytical challenge for clinical and forensic toxicologists but also for doping control. NPS usually belong to various classes such as synthetic cannabinoids, phenethylamines, opioids, or benzodiazepines. Like other xenobiotics, NPS undergo absorption, distribution, metabolism, and excretion processes after consumption, but only very limited data concerning their toxicokinetics and safety properties is available once they appear on the market. The inclusion of metabolites in mass spectral libraries is often crucial for the detection of NPS especially in urine screening approaches. Authentic human samples may represent the gold standard for identification of metabolites but are often not available and clinical studies cannot be performed due to ethical concerns. However, numerous alternative in vitro and in vivo models are available. This trends article will give an overview on selected models, discuss current studies, and highlight recent developments.
Collapse
|
13
|
Walle N, Doerr AA, Laschke MW, Menger MD, Meyer MR, Schmidt PH, Schaefer N. Systematic Studies on Temperature-Dependent in Vitro Stability During Storage and Smoking of the Synthetic Cannabinoid 5F-MDMB-P7AICA. J Anal Toxicol 2021; 46:374-382. [PMID: 33629711 DOI: 10.1093/jat/bkab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolism studies have shown that the synthetic cannabinoid (SC) 5F-MDMB-P7AICA is predominantly degraded by ester hydrolysis to 5F-MDMB-P7AICA dimethyl butanoic acid. To investigate the stability of 5F-MDMB-P7AICA during storage for a certain period of time or smoking, in vitro stability tests were performed. Blood and serum samples were collected repeatedly during a toxicokinetic study using a pig model and were retested after a 5 and 12 months storage at different temperatures (-20 °C, 4 °C, or room temperature, RT). Analysis was performed using fully validated liquid chromatography tandem mass spectrometry methods following liquid-liquid extraction and protein precipitation. One set of samples was analyzed immediately following the experiment (WS). In the WS samples, 5F-MDMB-P7AICA and 5F-MDMB-P7AICA dimethyl butanoic acid were present in every sample collected throughout the whole experiment. Analysis of the blood and serum samples stored for 5 and 12 months at -20 °C and 4 °C revealed relatively stable concentrations of the parent substance and the dimethyl butanoic acid metabolite. Regarding the samples stored at RT, concentrations of 5F-MDMB-P7AICA decreased, whilst concentrations of the hydrolysis product increased. This change could particularly be observed in samples with a high initial concentration of the analytes. A further screening of the samples stored at RT revealed no other degradation products. In conclusion, the SC 5F-MDMB-P7AICA could be detected even after 12 months of storage at RT and therefore seems to be more stable than its isomer, 5F-ADB. Regarding the smoke condensate, beside the parent compound only trace amounts of dimethyl butanoic acid were found.
Collapse
Affiliation(s)
- Nadja Walle
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421 Homburg, Germany
| | - Adrian A Doerr
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Building 65/66, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Building 65/66, 66421 Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Building 46, 66421 Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421 Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421 Homburg, Germany
| |
Collapse
|
14
|
Ewing P, Oag S, Lundqvist A, Stomilovic S, Stellert I, Antonsson M, Nunes SF, Andersson PU, Tehler U, Sjöberg C, Péterffy A, Gerde P. Airway Epithelial Lining Fluid and Plasma Pharmacokinetics of Inhaled Fluticasone Propionate and Salmeterol Xinafoate in Mechanically Ventilated Pigs. J Aerosol Med Pulm Drug Deliv 2020; 34:231-241. [PMID: 33216656 DOI: 10.1089/jamp.2020.1637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The lower respiratory tract of the landrace pig has close anatomical and physiological similarities with that of the human, and hence, for inhalation studies this species is well suited for biopharmaceutical research. Methods: The objective of this study was to evaluate pharmacokinetics in pigs following one dose of Diskus™ Seretide™ forte device, labeled 500/50 fluticasone propionate (FP) and salmeterol xinafoate (SX), respectively. The PreciseInhale™ (PI) instrument was used to actuate the inhaler for in vitro testing and aerosol dosing to pigs. In vitro, the aerosol was characterized with a cascade impactor with respect to mass median aerodynamic diameter, geometric standard deviation, and fine particle dose. In vivo, dry powder inhalation exposure was delivered as a short bolus dose, to anesthetized and mechanically ventilated landrace pigs. In addition to plasma PK, PK assessment of airway epithelial lining fluid (ELF) was used in this study. ELF of the depth of three to fourth airway generation of the right lung was accessed using standard bronchoscopy and a synthetic absorptive matrix. Results and Conclusions: Dry powder inhalation exposures with good consistency and well characterized aerosols to the pig lung were achieved by the use of the PreciseInhale™ instrument. Drug concentrations of ELF for both FP and SX were demonstrated to be four to five orders of magnitude higher than its corresponding systemic plasma drug concentrations. Clinical PK following inhalation of the same dose was used as benchmark, and the clinical study did demonstrate similar plasma PK profiles and drug exposures of both FP and SX as the current pig study. Two factors explain the close similarity of PK (1) similiar physiology between species and (2) the consistency of dosing to animals. To conclude, our study demonstrated the utility and translational potential of conducting PK studies in pigs in the development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Pär Ewing
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundqvist
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stina Stomilovic
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Stellert
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Antonsson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandro Filipe Nunes
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Sjöberg
- Flexura AB, Sweden.,Inhalation Sciences AB, Sweden
| | - AnnaMaria Péterffy
- Late-stage Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Gerde
- Inhalation Sciences AB, Sweden.,Environmental Medicine Karolinska Institutet, Sweden
| |
Collapse
|
15
|
Plasma concentrations of eleven cannabinoids in cattle following oral administration of industrial hemp (Cannabis sativa). Sci Rep 2020; 10:12753. [PMID: 32728233 PMCID: PMC7391639 DOI: 10.1038/s41598-020-69768-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022] Open
Abstract
Cannabinoid production for medicinal purposes has renewed interest in utilizing byproducts of industrial hemp (IH) as a feed source for livestock. However, the presence of bioactive residues in animal tissues may pose a risk to consumers. The purpose of this study was to characterize the plasma pharmacokinetics (PK) of cannabinoids and their metabolites in cattle after a single oral exposure to IH. Eight castrated male Holstein calves received a single oral dose of 35 g of IH to achieve a target dose of 5.4 mg/kg cannabidiolic acid (CBDA). Blood samples were collected for 96 h after dosing. Plasma cannabinoid concentrations were profiled using liquid chromatography coupled with mass-spectroscopy (UPLC) and PK parameters were calculated using noncompartmental methods. The cannabinoids CBDA, tetrahydrocannabinolic acid-A (THCA-A), cannabidivarinic acid (CBDVA), and cannabichromenic acid (CBCA) were detected in all cattle after IH dosing. The geometric mean maximum concentration of CBDA of 72.7 ng/mL was observed at 14 h after administration. The geometric mean half-life of CBDA was 14.1 h. No changes in serum biochemistry analysis were observed following IH dosing compared to baseline values. These results show acidic cannabinoids, especially CBDA, are readily absorbed from the rumen and available for distribution throughout the body.
Collapse
|
16
|
Walle N, Nordmeier F, Doerr AA, Peters B, Laschke MW, Menger MD, Schmidt PH, Meyer MR, Schaefer N. Comparison of in vitro and in vivo models for the elucidation of metabolic patterns of 7-azaindole-derived synthetic cannabinoids exemplified using cumyl-5F-P7AICA. Drug Test Anal 2020; 13:74-90. [PMID: 32678962 DOI: 10.1002/dta.2899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Due to the dynamic market involving synthetic cannabinoids (SCs), the determination of analytical targets is challenging in clinical and forensic toxicology. SCs usually undergo extensive metabolism, and therefore their main metabolites must be identified for the detection in biological matrices, particularly in urine. Controlled human studies are usually not possible for ethical reasons; thus, alternative models must be used. The aim of this work was to predict the in vitro and in vivo metabolic patterns of 7-azaindole-derived SCs using 1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-pyrollo[2,3-b]pyridin-3-carboxamide (cumyl-5F-P7AICA) as an example. Different in vitro (pooled human liver S9 fraction, pooled human liver microsomes, and pig liver microsomes) and in vivo (rat and pig) systems were compared. Monooxygenase isoenzymes responsible for the most abundant phase I steps, namely oxidative defluorination (OF) followed by carboxylation, monohydroxylation, and ketone formation, were identified. In both in vivo models, OF/carboxylation and N-dealkylation/monohydroxylation/sulfation could be detected. Regarding pHS9 and pig urine, monohydroxylation/sulfation or glucuronidation was also abundant. Furthermore, the parent compound could still be detected in all models. Initial monooxygenase activity screening revealed the involvement of CYP2C19, CYP3A4, and CYP3A5. Therefore, in addition to the parent compound, the OF/carboxylated and monohydroxylated (and sulfated or glucuronidated) metabolites can be recommended as urinary targets. In comparison to literature, the pig model predicts best the human metabolic pattern of cumyl-5F-P7AICA. Furthermore, the pig model should be suitable to mirror the time-dependent excretion pattern of parent compounds and metabolites.
Collapse
Affiliation(s)
- Nadja Walle
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | | | - Adrian A Doerr
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Benjamin Peters
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Prado E, Matos RR, de Lima Gomes GM, de Sá CBL, da Costa Nunes IK, de Souza Anselmo C, de Oliveira AS, do Amaral Cohen LS, de Siqueira DS, de Oliveira MAM, Ambrosio JCL, Costa GV, de Aquino Neto FR, Padilha MC, Pereira HMG. Metabolism of synthetic cathinones through the zebrafish water tank model: a promising tool for forensic toxicology laboratories. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Purpose
The aim of this study was to identify in vivo phase I metabolites of five psychoactive substances: N-ethylpentylone, ethylone, methylone, α-PVP and 4-CDC, using the in house developed experimental set-up zebrafish (Danio rerio) water tank (ZWT). High-resolution mass spectrometry allowed for metabolite identification. A pilot study of reference standard collection of N-ethylpentylone from the water tank was conducted.
Methods
ZWT consisted in 8 fish placed in a 200 mL recipient-containing water for a single cathinone. Experiments were performed in triplicate. Water tank samples were collected after 8 h and pretreated through solid-phase extraction. Separation and accurate-mass spectra of metabolites were obtained using liquid chromatography–high resolution tandem mass spectrometry.
Results
Phase I metabolites of α-PVP were identified, which were formed involving ketone reduction, hydroxylation, and 2″-oxo-pyrrolidine formation. The lactam derivative was the major metabolite observed for α-PVP in ZWT. N-Ethylpentylone and ethylone were transformed into phase I metabolites involving reduction, hydroxylation, and dealkylation. 4-CDC was transformed into phase I metabolites, reported for the first time, involving N-dealkylation, N,N-bis-dealkylation and reduction of the ketone group, the last one being the most intense after 8 h of the experiment.
Conclusions
ZWT model indicated to be very useful to study the metabolism of the synthetic cathinones, such as N-ethylpentylone, ethylone, α-PVP and 4-CDC. Methylone seems to be a potent CYP450 inhibitor in zebrafish. More experiments are needed to better evaluate this issue. Finally, this approach was quite simple, straightforward, extremely low cost, and fast for “human-like” metabolic studies of synthetic cathinones.
Collapse
|
18
|
Schaefer N, Nordmeier F, Kröll AK, Körbel C, Laschke MW, Menger MD, Maurer HH, Meyer MR, Schmidt PH. Is adipose tissue suitable for detection of (synthetic) cannabinoids? A comparative study analyzing antemortem and postmortem specimens following pulmonary administration of JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol to pigs. Arch Toxicol 2020; 94:3421-3431. [PMID: 32666126 PMCID: PMC7502066 DOI: 10.1007/s00204-020-02843-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022]
Abstract
Examining fatal poisonings, chronic exposure may be reflected by the concentration in tissues known for long-term storage of drugs. Δ9-tetrahydrocannabinol (THC) persists in adipose tissue (AT), but sparse data on synthetic cannabinoids (SC) are available. Thus, a controlled pig study evaluating antemortem (AM) disposition and postmortem (PM) concentration changes of the SC 4-ethylnaphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indole-3-yl)methanone (RCS-4) as well as THC in AT was performed. The drugs were administered pulmonarily (200 µg/kg body weight) to twelve pigs. Subcutaneous (s.c.) AT specimens were collected after 15 and 30 min and then hourly up to 8 h. At the end, pigs were sacrificed and s.c., perirenal, and dorsal AT specimens were collected. The carcasses were stored at room temperature (RT; n = 6) or 4 °C (n = 6) and specimens were collected after 24, 48, and 72 h. After homogenization in acetonitrile and standard addition, LC-MS/MS was performed. Maximum concentrations were reached 0.5-2 h after administration amounting to 21 ± 13 ng/g (JWH-210), 24 ± 13 ng/g (RCS-4), and 22 ± 20 ng/g (THC) and stayed at a plateau level. Regarding the metabolites, very low concentrations of N-hydroxypentyl-RCS-4 (HO-RCS-4) were detected from 0.5 to 8 h. PM concentrations of parent compounds did not change significantly (p > 0.05) over time under both storage conditions. Concentrations of HO-RCS-4 significantly (p < 0.05) increased in perirenal AT during storage at RT. These results suggest a rapid distribution and persistence in s.c. AT. Furthermore, AT might be resistant to PM redistribution of parent compounds. However, significant PM increases of metabolite concentrations might be considered in perirenal AT.
Collapse
Affiliation(s)
- Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany.
| | - Frederike Nordmeier
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany
| | - Ann-Katrin Kröll
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Building 65/66, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Building 65/66, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Building 65/66, 66421, Homburg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Building 46, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Building 46, 66421, Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany
| |
Collapse
|
19
|
Time- and temperature-dependent postmortem concentration changes of the (synthetic) cannabinoids JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol following pulmonary administration to pigs. Arch Toxicol 2020; 94:1585-1599. [PMID: 32189036 PMCID: PMC7261730 DOI: 10.1007/s00204-020-02707-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
In forensic toxicology, interpretation of postmortem (PM) drug concentrations might be complicated due to the lack of data concerning drug stability or PM redistribution (PMR). Regarding synthetic cannabinoids (SC), only sparse data are available, which derived from single case reports without any knowledge of dose and time of consumption. Thus, a controlled pig toxicokinetic study allowing for examination of PMR of SC was performed. Twelve pigs received a pulmonary dose of 200 µg/kg BW each of 4-ethylnaphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-210), 2-(4-methoxyphenyl)-1-(1-pentyl-indole-3-yl)methanone (RCS-4), and Δ9-tetrahydrocannabinol via an ultrasonic nebulizer. Eight hours after, the pigs were put to death with T61 and specimens of relevant tissues and body fluids were collected. Subsequently, the animals were stored at room temperature (n = 6) or 4 °C (n = 6) and further samples were collected after 24, 48, and 72 h each. Concentrations were determined following enzymatic cleavage and solid-phase extraction by liquid-chromatography tandem mass spectrometry applying the standard addition approach. High concentrations of the parent compounds were observed in lung, liver, kidney and bile fluid/duodenum content as well as brain. HO-RCS-4 was the most prevalent metabolite detected in PM specimens. In general, changes of PM concentrations were found in every tissue and body fluid depending on the PM interval as well as storage temperature.
Collapse
|
20
|
Worob A, Wenthur C. DARK Classics in Chemical Neuroscience: Synthetic Cannabinoids (Spice/K2). ACS Chem Neurosci 2019; 11:3881-3892. [PMID: 31799831 DOI: 10.1021/acschemneuro.9b00586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This Review covers the background, pharmacology, adverse effects, synthesis, pharmacokinetics, metabolism, and history of synthetic cannabinoid compounds. Synthetic cannabinoids are a class of novel psychoactive substances that act as agonists at cannabinoid receptors. This class of compounds is structurally diverse and rapidly changing, with multiple generations of molecules having been developed in the past decade. The structural diversity of synthetic cannabinoids is supported by the breadth of chemical space available for exploitation by clandestine chemists and incentivized by attempts to remain ahead of legal pressures. As a class, synthetic cannabinoid products have a more serious adverse effect profile than that of traditional phytocannabinoids, including notable risks of lethality, as well as a history of dangerous adulteration. Most synthetic cannabinoids are rapidly metabolized to active species with prolonged residence times and peripheral tissue distribution, and analytical confirmation of use of these compounds remains challenging. Overall, the emergence of synthetic cannabinoids serves as a noteworthy example of the pressing public health challenges associated with the increasing development of easily synthesized, structurally flexible, highly potent, psychoactive drugs.
Collapse
Affiliation(s)
- Adam Worob
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Cody Wenthur
- Divisions of Pharmaceutical Sciences and Pharmacy Practice, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
21
|
Toxicokinetic studies of the four new psychoactive substances 4-chloroethcathinone, N-ethylnorpentylone, N-ethylhexedrone, and 4-fluoro-alpha-pyrrolidinohexiophenone. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00487-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Schaefer N, Kröll AK, Körbel C, Laschke MW, Menger MD, Maurer HH, Meyer MR, Schmidt PH. Distribution of the (synthetic) cannabinoids JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol following pulmonary administration to pigs. Arch Toxicol 2019; 93:2211-2218. [DOI: 10.1007/s00204-019-02493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 01/18/2023]
|
23
|
Postmortem analysis of famprofazone and its metabolites, methamphetamine and amphetamine, in porcine bone marrow. Talanta 2019; 191:545-552. [DOI: 10.1016/j.talanta.2018.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 11/21/2022]
|
24
|
Schaefer N, Wojtyniak JG, Kroell AK, Koerbel C, Laschke MW, Lehr T, Menger MD, Maurer HH, Meyer MR, Schmidt PH. Can toxicokinetics of (synthetic) cannabinoids in pigs after pulmonary administration be upscaled to humans by allometric techniques? Biochem Pharmacol 2018; 155:403-418. [DOI: 10.1016/j.bcp.2018.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022]
|
25
|
Richter JS, Quenardelle V, Rouyer O, Raul JS, Beaujeux R, Gény B, Wolff V. A Systematic Review of the Complex Effects of Cannabinoids on Cerebral and Peripheral Circulation in Animal Models. Front Physiol 2018; 9:622. [PMID: 29896112 PMCID: PMC5986896 DOI: 10.3389/fphys.2018.00622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
While cannabis is perceived as a relatively safe drug by the public, accumulating clinical data suggest detrimental cardiovascular effects of cannabinoids. Cannabis has been legalized in several countries and jurisdictions recently. Experimental studies specifically targeting cannabinoids' effects on the cerebral vasculature are rare. There is evidence for transient vasoconstrictive effects of cannabinoids in the peripheral and cerebral vasculature in a complex interplay of vasodilation and vasoconstriction. Vasoreactivity to cannabinoids is dependent on the specific molecules, their metabolites and dose, baseline vascular tone, and vessel characteristics as well as experimental conditions and animal species. We systematically review the currently available literature of experimental results in in vivo and in vitro animal studies, examining cannabinoids' effects on circulation and reactive vasodilation or vasoconstriction, with a particular focus on the cerebral vascular bed.
Collapse
Affiliation(s)
- J. Sebastian Richter
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
| | - Véronique Quenardelle
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| | - Olivier Rouyer
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | | | - Rémy Beaujeux
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
| | - Bernard Gény
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Wolff
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| |
Collapse
|
26
|
Schaefer N, Kettner M, Laschke MW, Schlote J, Ewald AH, Menger MD, Maurer HH, Schmidt PH. Distribution of Synthetic Cannabinoids JWH-210, RCS-4 and Δ 9-Tetrahydrocannabinol After Intravenous Administration to Pigs. Curr Neuropharmacol 2018; 15:713-723. [PMID: 27834143 PMCID: PMC5771047 DOI: 10.2174/1570159x15666161111114214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/19/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Synthetic cannabinoids (SCs) have become an increasing issue in forensic toxicology. Controlled human studies evaluating pharmacokinetic data of SCs are lacking and only few animal studies have been published. Thus, an interpretation of analytical results found in intoxicated or poisoned individuals is difficult. Therefore, the distribution of two selected SCs, namely 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) as well as ∆9-tetrahydrocannabinol (THC) as reference were examined in pigs. Methods: Pigs (n = 6 per drug) received a single intravenous 200 µg/kg BW dose of JWH-210, RCS-4, or THC. Six hours after administration, the animals were exsanguinated and relevant organs, important body fluids such as bile, and tissues such as muscle and adipose tissue, as well as the bradytrophic specimens dura and vitreous humor were collected. After hydrolysis and solid phase extraction, analysis was performed by LC-MS/MS. To overcome matrix effects of the LC-MS/MS analysis, a standard addition method was applied for quantification. Results: The parent compounds could be detected in every analyzed specimen with the exception of THC that was not present in dura and vitreous humor. Moderate concentrations were present in brain, the site of biological effect. Metabolite concentrations were highest in tissues involved in metabolism and/or elimination. Conclusions: Besides kidneys and lungs routinely analyzed in postmortem toxicology, brain, adipose, and muscle tissue could serve as alternative sources, particularly if other specimens are not available. Bile fluid is the most appropriate specimen for SCs and THC metabolites detection.
Collapse
Affiliation(s)
- Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Building 80.2, D-66421 Homburg (Saar). Germany
| | - Mattias Kettner
- Institute of Legal Medicine, Saarland University, Building 80.2, D-66421 Homburg (Saar). Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, D-66421 Homburg (Saar). Germany
| | - Julia Schlote
- Institute of Legal Medicine, Saarland University, Building 80.2, D-66421 Homburg (Saar). Germany
| | - Andreas H Ewald
- Institute of Legal Medicine, Saarland University, Building 80.2, D-66421 Homburg (Saar). Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, D-66421 Homburg (Saar). Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Saarland University, Building 46 D-66421 Homburg (Saar). Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Building 80.2, D-66421 Homburg (Saar). Germany
| |
Collapse
|
27
|
Abstract
Bioanalysis of new psychoactive substances (NPS) is very challenging due to the growing number of compounds with new chemical structures found on the drugs of abuse market. Screening, identification, and quantification in biosamples are needed in clinical and forensic toxicology settings, and these procedures are more challenging than the analysis of seized drug material because of extremely low concentrations encountered in biofluids but also due to diverse metabolic alterations of the parent compounds. This article focuses on bioanalytical single- and multi-analyte procedures applicable to a broad variety of NPS in various biomatrices, such as blood, urine, oral fluid, or hair. Sample preparation, instrumentation, detection modes, and data evaluation are discussed as well as corresponding pitfalls. PubMed-listed and English-written original research papers and review articles published online between 01 October 2012 and 30 September 2017 were considered.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany.
| |
Collapse
|
28
|
The feasibility of physiologically based pharmacokinetic modeling in forensic medicine illustrated by the example of morphine. Int J Legal Med 2017; 132:415-424. [DOI: 10.1007/s00414-017-1754-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
|
29
|
New psychoactive substances: an overview on recent publications on their toxicodynamics and toxicokinetics. Arch Toxicol 2016; 90:2421-44. [PMID: 27665567 DOI: 10.1007/s00204-016-1812-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
This review article covers English-written and PubMed-listed review articles and original studies published between January 2015 and April 2016 dealing with the toxicodynamics and toxicokinetics of new psychoactive substances. Compounds covered include stimulants and entactogens, synthetic cannabinoids, tryptamines, NBOMes, phencyclidine-like drugs, benzodiazepines, and opioids. First, an overview and discussion is provided on timely review articles followed by an overview and discussion on recent original studies. Both sections are then concluded by an opinion on these latest developments. This review shows that the NPS market is still highly dynamic and that the data published on their toxicodynamics and toxicokinetics can hardly keep pace with the appearance of new entities. However, data available are very helpful to understand and predict how NPS may behave in severe intoxication. The currently best-documented parameter is the in vitro metabolism of NPS, a prerequisite to allow detection of NPS in biological matrices in cases of acute intoxications or chronic consumption. However, additional data such as their chronic toxicity are still lacking.
Collapse
|
30
|
Schaefer N, Helfer AG, Kettner M, Laschke MW, Schlote J, Ewald AH, Meyer MR, Menger MD, Maurer HH, Schmidt PH. Metabolic patterns of JWH-210, RCS-4, and THC in pig urine elucidated using LC-HR-MS/MS: Do they reflect patterns in humans? Drug Test Anal 2016; 9:613-625. [DOI: 10.1002/dta.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nadine Schaefer
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Andreas G. Helfer
- Department of Experimental and Clinical Toxicology; Saarland University; Building 46 D-66421 Homburg (Saar) Germany
| | - Mattias Kettner
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery; Saarland University; Building 65/66 D-66421 Homburg (Saar) Germany
| | - Julia Schlote
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Andreas H. Ewald
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology; Saarland University; Building 46 D-66421 Homburg (Saar) Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology; Heidelberg University Hospital; Im Neuenheimer Feld 410 D-69120 Heidelberg Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery; Saarland University; Building 65/66 D-66421 Homburg (Saar) Germany
| | - Hans H. Maurer
- Department of Experimental and Clinical Toxicology; Saarland University; Building 46 D-66421 Homburg (Saar) Germany
| | - Peter H. Schmidt
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| |
Collapse
|