1
|
Roko G, Porada R, Gdula-Argasińska J, Piekoszewski W, Chabi-Sika K, Krakowska-Sieprawska A, Buszewski B, Librowski T, Baba-Moussa L. Comparison of supercritical CO 2 extraction and pressurized fluid extraction for isolation of alkaloids from Anacardium occidentale with the study of its anti-inflammatory activity. J Pharm Biomed Anal 2024; 241:115982. [PMID: 38237542 DOI: 10.1016/j.jpba.2024.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
In recent years, there has been a growing interest in the therapeutic potential of natural compounds, particularly of plant origin, owing to their demonstrated anti-inflammatory properties. Among these, Anacardium occidentale, commonly known as cashew, has garnered significant attention due to its reputed health benefits. This study aim to establish a correlation between the bioactive compounds contained in the extracts of Anacardium occidentale and its anti-inflammatory activity. Dried Anacardium occidentale leaves powder was used as the extraction matrix. Extraction techniques are maceration, pressurized fluid extraction (PFE), and supercritical fluid extraction (SFE). The preliminary analysis of extracts was made by LC-MS/MS. The Response Surface Methodology (RSM), Principal Component Analysis (PCA), and heat maps were employed to model the influence of experimental conditions on extraction yield and peak area of specific compounds from the plant. To evaluate anti-inflammatory activity, RAW 264.7 cells were cultured, activated with LPS, and treated with varying concentrations of the plant extracts. Cell proliferation was assessed using the XTT assay. Indeed, Anacardium occidentale extracts contain anacardic acids, cardanols, and cardol, with distinct profiles yielded by SFE and ethanol-based methods. RSM shows that temperature and ethanol, as additives to CO2, significantly affect extraction efficiency in both PFE and SFE. Moreover, this composition with SFE demonstrate higher selectivity for specific group of compounds. The extracts exhibit anti-inflammatory properties without cytotoxicity in macrophages, reducing levels of pro-inflammatory proteins COX-2, COX-1, and TLR4 in activated cells. This suggests their potential as anti-inflammatory agents without adverse effects on cell viability or pro-inflammatory protein levels in non-activated cells. Overall, these findings underscore the promising therapeutic potential of Anacardium occidentale extracts in mitigating inflammation, while also providing crucial insights into optimizing the extraction process for targeted compound isolation. Thus, this makes a good prospect for the development of anti-inflammatory drugs from this plant.
Collapse
Affiliation(s)
- Gautier Roko
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Radosław Porada
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kamirou Chabi-Sika
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Aneta Krakowska-Sieprawska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A, 10-719 Olsztyn, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| |
Collapse
|
2
|
Dziubina A, Szkatuła D, Gdula-Argasińska J, Sapa J. Synthesis and antinociceptive activity of four 1H-isoindolo-1,3(2H)-diones. Arch Pharm (Weinheim) 2022; 355:e2100423. [PMID: 35396875 DOI: 10.1002/ardp.202100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
The present study aimed to design and synthesize a series of 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl phthalimide derivatives, which are analogs of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives with proven analgesic effect. In accordance with the basic principle proposed by Lipinski's rule, the probable bioavailabilities of the F1-F4 phthalimides were assessed. The obtained values indicate good absorption after oral administration and the ability to cross the blood-brain barrier. The four compounds F1-F4 differing in the type of pharmacophore in the phenyl group of the 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl on the imide nitrogen atom (R, F1-F3) and the 4-benzhydryl analog (F4) were selected for in vitro and in vivo studies. Based on the in vitro studies, the effects of compounds F1-F4 on cell viability/proliferation and COX-2 levels were evaluated. Moreover, using in vivo methods, the compounds were tested for antinociceptive activity in models of acute pain (the writhing and the hot-plate tests) in mice. Their influence on the motor coordination effect and locomotor activity was also tested. The obtained results revealed that the compounds F1-F4 strongly suppress the pain of peripheral origin and to a lesser extent (F1-F3) pain of central/supraspinal origin. In the in vitro studies, F1-F4 reduced the COX-2 level in lipopolysaccharide-activated RAW 264.7 cells, which suggests their anti-inflammatory activity.
Collapse
Affiliation(s)
- Anna Dziubina
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Dominika Szkatuła
- Department of Medicinal Chemistry, Wrocław Medical University, Wrocław, Poland
| | - Joanna Gdula-Argasińska
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
3
|
A Comparative Survey of Anti-Melanoma and Anti-Inflammatory Potential of Usnic Acid Enantiomers-A Comprehensive In Vitro Approach. Pharmaceuticals (Basel) 2021; 14:ph14090945. [PMID: 34577645 PMCID: PMC8470841 DOI: 10.3390/ph14090945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
Usnic acid (UA) is a chiral lichen metabolite with an interesting pharmacological profile. The aim of this study was to compare the anti-melanoma effect of (+)-UA and (−)-UA in an in vitro model by studying their impact on the cells as well as the processes associated with cancer progression. The effect of UA enantiomers on the viability, proliferation, and invasive potential of three melanoma cell lines (HTB140, A375, WM793) was evaluated. Their interaction with a chemotherapeutic drug—doxorubicin was assessed by isobolographic analysis. Anti-inflammatory and anti-tyrosinase properties of (+)-UA and (−)-UA were also examined. Both UA enantiomers dose- and time-dependently decreased the viability of all three melanoma cell lines. Their synergistic effect with doxorubicin was observed on A375 cells. (+)-Usnic acid at a sub-cytotoxic dose strongly inhibited melanoma cells migration. Both UA enantiomers decreased the release of pro-inflammatory mediators. The cytotoxic effect of (+)-UA and (−)-UA depends greatly on the melanoma cell type; however, the overall anti-melanoma potential is perspective. Our results indicate that the strategy of combining usnic acid enantiomers with cytostatic drugs may be an interesting option to consider in combating melanoma; however, further studies are required.
Collapse
|
4
|
Effect of Eicosapentaenoic Acid Supplementation on Murine Preadipocytes 3T3-L1 Cells Activated with Lipopolysaccharide and/or Tumor Necrosis Factor-α. Life (Basel) 2021; 11:life11090977. [PMID: 34575127 PMCID: PMC8472223 DOI: 10.3390/life11090977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
The beneficial effect of n-3 fatty acids can be related to anti-inflammatory properties. The aim of the study was to analyzed the effect of eicosapentaenoic acid (EPA) on 3T3-L1 cells (murine embryonic fibroblasts‒preadipocytes) activated with inflammatory factors (IF). Cells were incubated with 50 µmol of EPA for 48 h, and then activated with lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α). The level of cycloxygenase-2 (Prostaglandin-Endoperoxide Synthase 2, PTGS2, COX-2), cytosolic prostaglandin synthase E2 (cPGES), fatty acid binding protein 4 (FABP4), toll-like receptor 4 (TLR4), glucose receptor type 4 (GLUT-4), and cannabinoid receptor 2 (CB2) was determined using Western blot analysis. The phospholipase A2 (Pla2g4a), and prostaglandin-Endoperoxide Synthase 2 (Ptgs2) gene expression was analyzed by real-time qPCR. After EPA and IF activation, a significant decrease in the COX-2, cPGES, and TRL4 protein levels was observed. Incubation of cells with EPA and IF resulted in a decrease in Ptgs2 and an increase in the Pla2g4a gene. A significant increase in the CB2 protein was observed in adipocytes co-treated with EPA and IF. The results indicated an anti-inflammatory properties of EPA. Interestingly, the activation of the GLUT4 receptor by EPA suggests an unique role of this FA in the regulation of the adipocyte metabolism and prevention of insulin resistance.
Collapse
|
5
|
Zhang Q, He J, Xu F, Huang X, Wang Y, Zhang W, Liu J. Supramolecular copolymer modified statin-loaded discoidal rHDLs for atherosclerotic anti-inflammatory therapy by cholesterol efflux and M2 macrophage polarization. Biomater Sci 2021; 9:6153-6168. [PMID: 34346410 DOI: 10.1039/d1bm00610j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Foam cells with the pro-inflammatory macrophage phenotype (M1) play an essential role in atherosclerosis progression. Either cellular cholesterol removal or drug intervention was reported to polarize M1 into the anti-inflammatory phenotype (M2) for atherosclerosis regression. These might be realized simultaneously by drug-loaded discoidal reconstituted high-density lipoproteins (d-rHDLs) with the functions of cellular cholesterol efflux and targeted drug delivery on macrophages. However, cholesterol reception can drive the remodelling of d-rHDLs, which serves to release drugs specifically in the atherosclerotic plaque but might incur premature drug leakage in blood circulation. Given that, the proposed strategy is to inhibit the remodelling behaviour of the carrier in blood circulation and responsively accelerate it under the atherosclerotic microenvironmental stimulus. Herein, atorvastatin calcium-loaded d-rHDL was modified by a PEGylated ferrocene/β-cyclodextrin supramolecular copolymer (PF/TC) to construct ROS-responsive PF/TC-AT-d-rHDL, which is expected to possess plasma stability and biosafety as well as triggered drug release by cholesterol efflux promotion. As a result, PF/TC-AT-d-rHDL could responsively dissemble into β-cyclodextrin modified AT-d-rHDL under the ROS-triggered dissociation of PF/TC, therefore exhibiting increased cholesterol efflux from the cholesterol donor and drug release through the remodelling behaviour of the carrier in vitro. Moreover, PF/TC-AT-d-rHDL enhanced cellular cholesterol removal in foam cells after response to ROS, inhibiting intracellular lipid deposition compared with other d-rHDL carriers. Interestingly, cellular drug uptake was significantly promoted upon cellular cholesterol removal by restoring the permeability and fluidity of foam cell membranes as indicated by flow cytometry and fluorescence polarization analysis, respectively. Importantly, compared with untreated foam cells, PF/TC-AT-d-rHDL obviously increased the ratio of M2/M1 by 6.3-fold, which was even higher than the effect of PF/TC-d-rHDL (3.4-fold) and free drugs (1.9-fold), revealing that PF/TC-AT-d-rHDL synergistically promoted the M2 polarization of macrophages. Accordingly, PF/TC-AT-d-rHDL boosted the secretion of anti-inflammatory cytokines and inhibited that of inflammatory cytokines. Collectively, PF/TC-AT-d-rHDL exerted synergistic M2 polarization effects on foam cells for atherosclerotic immunomodulatory therapy via responsively mediating cholesterol efflux and delivering drugs.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Fengfei Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Yanyan Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| |
Collapse
|
6
|
Silva RA, Di Giulio RT, Rice CD. The In Vitro Proinflammatory Properties of Water Accommodated Sediment Extracts from a Creosote-Contaminated US Environmental Protection Agency Superfund Site. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1576-1585. [PMID: 33512033 PMCID: PMC10115128 DOI: 10.1002/etc.5001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The southern branch of the Elizabeth River near Portsmouth, Virginia, USA, is one of the most creosote-polluted subestuaries in North America and the former location of the Atlantic Wood US Environmental Protection Agency Superfund site. We previously demonstrated that adult Atlantic Wood killifish collected in situ had severe hepatic lesions, including hepatoblastoma and hepatocellular carcinoma, as well as suppressed circulating antibody responses compared to a historical reference site. Moreover, several innate immune functions were higher in Atlantic Wood fish, including elevated expression of hepatic cyclooxygenase-2 (COX-2), suggesting a proinflammatory environment. To further examine the potential of Atlantic Wood contaminants to modulate innate immune function(s), the present study used RAW264.7 mouse macrophages as an in vitro model to develop new approach methodologies for rapid screening. Lipopolysaccharide (LPS)-stimulated nitric oxide secretion by macrophages is a rapid, sensitive, and predictive in vitro system for screening potentially immunotoxic contaminants as single compounds or as complex mixtures. Compared to the reference site, filter-sterilized Atlantic Wood sediment extracts (water accommodated fractions) induced nitric oxide and IL-6 secretion as well as inducible nitric oxide synthase and COX-2 proteins at levels comparable to or higher than those induced by LPS treatments alone. Extracts also increased phagocytic activity by macrophages. Using a limulus lysate assay, we show that bacterial endotoxin levels in Atlantic Wood extracts are higher than in reference extracts and that polymyxin-B chelation ameliorates proinflammatory effects. These findings illuminate the reality of sediment constituents other than toxic compounds previously associated with developmental abnormalities and carcinogenesis in killifish from the Atlantic Wood site. Perhaps these data also suggest the presence of contaminant-adapted consortia of sediment microbes at many heavily polluted sites worldwide compared to less contaminated sites. Environ Toxicol Chem 2021;40:1576-1585. © 2021 SETAC.
Collapse
Affiliation(s)
- Rayna A. Silva
- Department of Biological Sciences, Graduate Program in Environmental Toxicology, Clemson University, Clemson SC USA
| | | | - Charles D. Rice
- Department of Biological Sciences, Graduate Program in Environmental Toxicology, Clemson University, Clemson SC USA
| |
Collapse
|
7
|
He J, Yang Y, Zhou X, Zhang W, Liu J. Shuttle/sink model composed of β-cyclodextrin and simvastatin-loaded discoidal reconstituted high-density lipoprotein for enhanced cholesterol efflux and drug uptake in macrophage/foam cells. J Mater Chem B 2021; 8:1496-1506. [PMID: 31999290 DOI: 10.1039/c9tb02101a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeting drug delivery to macrophage/foam cells is challenged owing to the poor cell permeability and fluidity resulting from the massive accumulation of intracellular cholesterol in atherosclerosis (AS). Discoidal reconstituted high-density lipoprotein (d-rHDL) has been well regarded as a potential drug delivery system for AS by virtue of its plaque-targeting and cholesterol removal abilities, while the latter is compromised by the high activation energy of cholesterol efflux. It is reported that a low concentration of β-cyclodextrin (β-CD) can function as a cholesterol shuttle to promote cholesterol efflux from cells to the extracellular acceptors (cholesterol sink, such as HDL particles), but it is still unknown whether the combination of β-CD with a drug-loaded d-rHDL can function as a shuttle/sink model to promote the remodeling and drug release of the d-rHDL carrier after accelerating the cholesterol efflux. Furthermore, it is interesting to investigate whether enhanced cholesterol efflux can improve the cellular drug uptake by restoring the permeability and fluidity of the cell membrane. Here, simvastatin-loaded d-rHDL (ST-d-rHDL) was combined with different concentrations of β-CD. Compared with ST-d-rHDL alone, the cholesterol removal ability of ST-d-rHDL combined with 0.5 mM of β-CD increased by 31-fold after incubation for 6 h and the cumulative drug release of ST-d-rHDL increased by two-fold during the initial 1 h in an acellular mimetic system. In macrophage/foam cells, 0.5 mM of β-CD showed superior promoting effects in the cholesterol removal ability and remodeling of ST-d-rHDL compared to 0.1 mM of β-CD. The high concentration of β-CD at 2 mM displayed a low efficiency for accelerating cholesterol efflux, which might function as a cholesterol sink rather than a cholesterol shuttle. Moreover, the permeability and fluidity of the cell membrane were improved by combining 0.5 mM of β-CD with ST-d-rHDL, which exhibited an enhanced cellular drug uptake and inhibiting effect on the intracellular lipid deposition and secretion of inflammatory cytokine. Collectively, combination of β-CD and ST-d-rHDL as a shuttle/sink model could enhance cholesterol efflux and drug uptake to suppress inflammation in macrophage/foam cells.
Collapse
Affiliation(s)
- Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Yun Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China. and State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264670, P. R. China
| | - Xiaoju Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China. and Institute of Pharmaceutics, Nanjing Research Center, Jiangsu Chia-tai Tianqing Pharmaceutical Co., Ltd, Nanjing, Jiangsu 210008, P. R. China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.
| |
Collapse
|
8
|
Depommier C, Flamand N, Pelicaen R, Maiter D, Thissen JP, Loumaye A, Hermans MP, Everard A, Delzenne NM, Di Marzo V, Cani PD. Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models. Cells 2021; 10:cells10010071. [PMID: 33466285 PMCID: PMC7824762 DOI: 10.3390/cells10010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The global obesity epidemic continues to rise worldwide. In this context, unraveling new interconnections between biological systems involved in obesity etiology is highly relevant. Dysregulation of the endocannabinoidome (eCBome) is associated with metabolic complications in obesity. This study aims at deciphering new associations between circulating endogenous bioactive lipids belonging to the eCBome and metabolic parameters in a population of overweight or obese individuals with metabolic syndrome. To this aim, we combined different multivariate exploratory analysis methods: canonical correlation analysis and principal component analysis, revealed associations between eCBome subsets, and metabolic parameters such as leptin, lipopolysaccharide-binding protein, and non-esterified fatty acids (NEFA). Subsequent construction of predictive regression models according to the linear combination of selected endocannabinoids demonstrates good prediction performance for NEFA. Descriptive approaches reveal the importance of specific circulating endocannabinoids and key related congeners to explain variance in the metabolic parameters in our cohort. Analysis of quartiles confirmed that these bioactive lipids were significantly higher in individuals characterized by important levels for aforementioned metabolic variables. In conclusion, by proposing a methodology for the exploration of large-scale data, our study offers additional evidence of the existence of an interplay between eCBome related-entities and metabolic parameters known to be altered in obesity.
Collapse
Affiliation(s)
- Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.F.); (V.D.M.)
| | - Rudy Pelicaen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Dominique Maiter
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Jean-Paul Thissen
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Audrey Loumaye
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Michel P. Hermans
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.F.); (V.D.M.)
- Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
- Correspondence: ; Tel.: +32-2-764-73-97
| |
Collapse
|
9
|
Antinociceptive, antiedematous, and antiallodynic activity of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives in experimental models of pain. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:813-827. [PMID: 31858155 DOI: 10.1007/s00210-019-01783-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
The aim of the presented study was to examine the potential antinociceptive, antiedematous (anti-inflammatory), and antiallodynic activities of two 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives (DSZ 1 and DSZ 3) in various experimental models of pain. For this purpose, the hot plate test, the capsaicin test, the formalin test, the carrageenan model, and oxaliplatin-induced allodynia tests were performed. In the hot plate test, only DSZ 1 in the highest dose (20 mg/kg) was active but its effects appear to be due to sedatation rather than antinociceptiveness. In capsaicin-induced neurogenic pain model, both compounds displayed a significant antinociceptive activity. In the formalin test, DSZ 1 and DSZ 3 (5-20 mg/kg) revealed antinociceptive activity in both phases but it was more pronounced in the second phase of the test. In this test, pretreatment with caffeine, DPCPX reversed the antinociceptive effect of DSZ 3. On the other hand, pretreatment with L-NAME diminished the antinociceptive effect of DSZ 1. Pretreatment with naloxone did not affect antinociceptive activity of both compounds. Similar to ketoprofen, DSZ 1 and DSZ 3 showed antiedematous (antiinflammatory) and antihyperalgesic activity, and similar to lidocaine local anesthetic activity. Furthermore, both compounds (5 and 10 mg/kg) reduced tactile allodynia in acute and chronic phases of neuropathic pain. In the in vitro studies, DSZ 1 and DSZ 3 reduced the COX-2 level in LPS-activated RAW 264.7 cells, which suggests their anti-inflammatory activity. In conclusion, both DSZ 1 and DSZ 3 displayed broad spectrum of activity in several pain models, including neurogenic, tonic, inflammatory, and chemotherapy-induced peripheral neuropathic pain.
Collapse
|
10
|
de Bus I, Zuilhof H, Witkamp R, Balvers M, Albada B. Novel COX-2 products of n-3 polyunsaturated fatty acid-ethanolamine-conjugates identified in RAW264.7 macrophages. J Lipid Res 2019; 60:1829-1840. [PMID: 31455615 PMCID: PMC6824491 DOI: 10.1194/jlr.m094235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
Cyclooxygenase 2 (COX-2) plays a key role in the regulation of inflammation by catalyzing the oxygenation of PUFAs to prostaglandins (PGs) and hydroperoxides. Next to this, COX-2 can metabolize neutral lipids, including endocannabinoid-like esters and amides. We developed an LC-HRMS-based human recombinant (h)COX-2 screening assay to examine its ability to also convert n-3 PUFA-derived N-acylethanolamines. Our assay yields known hCOX-2-derived products from established PUFAs and anandamide. Subsequently, we proved that eicosapentaenoylethanolamide (EPEA), the N-acylethanolamine derivative of EPA, is converted into PGE3-ethanolamide (PGE3-EA), and into 11-, 14-, and 18-hydroxyeicosapentaenoyl-EA (11-, 14-, and 18-HEPE-EA, respectively). Interestingly, we demonstrated that docosahexaenoylethanolamide (DHEA) is converted by hCOX-2 into the previously unknown metabolites, 13- and 16-hydroxy-DHEA (13- and 16-HDHEA, respectively). These products were also produced by lipopolysaccharide-stimulated RAW267.4 macrophages incubated with DHEA. No oxygenated DHEA metabolites were detected when the selective COX-2 inhibitor, celecoxib, was added to the cells, further underlining the role of COX-2 in the formation of the novel hydroxylated products. This work demonstrates for the first time that DHEA and EPEA are converted by COX-2 into previously unknown hydroxylated metabolites and invites future studies toward the biological effects of these metabolites.
Collapse
Affiliation(s)
- Ian de Bus
- Laboratory of Organic Chemistry Wageningen University and Research, Wageningen, The Netherlands.,Nutritional Biology and Health Group, Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry Wageningen University and Research, Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, People's Republic of China and Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Renger Witkamp
- Nutritional Biology and Health Group, Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Balvers
- Nutritional Biology and Health Group, Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Czepiel J, Gdula-Argasińska J, Biesiada G, Bystrowska B, Jurczyszyn A, Perucki W, Sroczyńska K, Zając A, Librowski T, Garlicki A. Fatty acids and selected endocannabinoids content in cerebrospinal fluids from patients with neuroinfections. Metab Brain Dis 2019; 34:331-339. [PMID: 30519835 PMCID: PMC6351517 DOI: 10.1007/s11011-018-0347-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Neuroinfections are a significant medical problem and can have serious health consequences for patients. Their outcome, if not fatal, can be associated with permanent residual deficits. Cerebrospinal fluid (CSF) examination is commonly used for meningitis confirmation. Fatty acids (FA) are precursors of lipid mediators with pharmacological activity. They actively modulate inflammation as well as contribute to its resolution. Therefore the aim of this study was to determine the FA and selected endocannabinoids (ECB) content in the CSF obtained from patients with bacterial (BM) and viral meningitis (VM) using chromatographic techniques. A significantly lower level of saturated FA was found in patients with BM and VM as compared to controls. There was a significantly higher concentration of long-chain monounsaturated FA and polyunsaturated n-6 FA in the CSF obtained from patients with neuroinfection. Moreover, a significant reduction of n-3 FA in CSF obtained from patients with BM and VM was demonstrated. The highest amount of ECB was detected in the CSF of patients with VM: eicosapentaenoyl ethanolamide (1.65 pg/mL), docosahexaenoyl ethanolamide (655.5 pg/mL) and nervonoyl ethanolamide (3.09 ng/mL). Results indicate the participation of long-chain monounsaturated and polyunsaturated FA and their derivatives in the inflammatory process and likely in the process of resolution of inflammation during neuroinfection. It seems that the determination of the FA and ECB profile in CSF may be a valuable biomarker of health and may allow the development of new pharmacological strategies, therapeutic goals and fatty acids supplementation necessary in the fight against inflammation of the central nervous system.
Collapse
Affiliation(s)
- Jacek Czepiel
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Grażyna Biesiada
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Bystrowska
- Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - William Perucki
- Department of Medicine, John Dempsey Hospital, University of Connecticut, Farmington, CT, USA
| | - Katarzyna Sroczyńska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Anna Zając
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Aleksander Garlicki
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
12
|
Alharthi N, Christensen P, Hourani W, Ortori C, Barrett DA, Bennett AJ, Chapman V, Alexander SPH. n-3 polyunsaturated N-acylethanolamines are CB 2 cannabinoid receptor-preferring endocannabinoids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1433-1440. [PMID: 30591150 DOI: 10.1016/j.bbalip.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/04/2018] [Indexed: 12/16/2022]
Abstract
Anandamide, the first identified endogenous cannabinoid and TRPV1 agonist, is one of a series of endogenous N-acylethanolamines, NAEs. We have generated novel assays to quantify the levels of multiple NAEs in biological tissues and their rates of hydrolysis through fatty acid amide hydrolase. This range of NAEs was also tested in rapid response assays of CB1, CB2 cannabinoid and TRPV1 receptors. The data indicate that PEA, SEA and OEA are not endocannabinoids or endovanilloids, and that the higher endogenous levels of these metabolites compared to polyunsaturated analogues are a correlate of their slow rates of hydrolysis. The n-6 NAEs (AEA, docosatetraenoyl and docosapentaenoyl derivatives) activated both CB1 and CB2 receptors, as well as TRPV1 channels, suggesting them to be 'genuine' endocannabinoids and 'endovanilloids'. The n-3 NAEs (eicosapentaenoyl, docosapentaenoyl and docosahexaenoyl derivatives) activated CB2 receptors and some n-3 NAEs (docosapentaenoyl and docosahexaenoyl derivatives) also activated TRPV1 channels, but failed to activate the CB1 receptor. We hypothesise that the preferential activation of CB2 receptors by n-3 PUFA NAEs contributes, at least in some part, to their broad anti-inflammatory profile.
Collapse
Affiliation(s)
- Nahed Alharthi
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Peter Christensen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Wafa Hourani
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Catherine Ortori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Andrew J Bennett
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
13
|
Kim HY, Spector AA. N-Docosahexaenoylethanolamine: A neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Mol Aspects Med 2018; 64:34-44. [PMID: 29572109 DOI: 10.1016/j.mam.2018.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
N-Docosahexaenoylethanolamine (synaptamide) is an endocannabinoid-like metabolite endogenously synthesized from docosahexaenoic acid (DHA, 22:6n-3), the major omega-3 polyunsaturated fatty acid present in the brain. Although its biosynthetic mechanism has yet to be established, there is a closely linked relationship between the levels of synaptamide and its precursor DHA in the brain. Synaptamide at nanomolar concentrations promotes neurogenesis, neurite outgrowth and synaptogenesis in developing neurons. Synaptamide also attenuates the lipopolysaccharide-induced neuroinflammatory response and reduces the deleterious effects of ethanol on neurogenic differentiation of neural stem cells (NSCs). These actions are mediated by a specific target receptor of synaptamide GPR110 (ADGRF1), a G-protein coupled receptor that is highly expressed in NSCs and the brain during development. Synaptamide binding to GPR110 induces cAMP production and phosphorylation of protein kinase A (PKA) and the cAMP response element binding protein (CREB). This signaling pathway leads to the expression of neurogenic and synaptogenic genes and suppresses the expression of proinflammatory genes. The GPR110-dependent cellular effects of synaptamide are recapitulated in animal models, suggesting that synaptamide-derived mechanisms may have translational implications. The synaptamide bioactivity transmitted by newly deorphanized GPR110 provides a novel target for neurodevelopmental and neuroprotective control as well as new insight into mechanisms for DHA's beneficial effects on the central nervous system.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States.
| | - Arthur A Spector
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| |
Collapse
|