1
|
Borgert CJ, Burgoon LD, Fuentes C. Kinetically-derived maximal dose (KMD) confirms lack of human relevance for high-dose effects of octamethylcyclotetrasiloxane (D4). Arch Toxicol 2025; 99:611-621. [PMID: 39799522 PMCID: PMC11774993 DOI: 10.1007/s00204-024-03914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated. Toxicity produced at doses above the KMD can be qualitatively different from toxicity produced at lower doses. Here, we test the hypothesis that high-dose-dependent toxicological effects of octamethylcyclotetrasiloxane (D4) occur secondary to kinetic overload. Octamethylcyclotetrasiloxane (D4) is a volatile, highly lipophilic monomer used to produce silicone polymers, which are ingredients in many consumer products and used widely in industrial applications and processes. Chronic inhalation at D4 concentrations 104 times greater than human exposures produces mild effects in rat respiratory tract, liver weight increase and pigment accumulation, nephropathy, uterine endometrial epithelial hyperplasia, non-significant increased uterine endometrial adenomas, and reduced fertility secondary to inhibition of rat-specific luteinizing hormone (LH) surge. Mechanistic studies indicate a lack of human relevance for most of these effects. Respiratory tract effects arise in rats due to direct epithelial contact with mixed vapor/aerosols and increased liver weight is a rodent-specific adaptative induction of drug-metabolizing hepatic enzymes. D4 is not mutagenic or genotoxic, does not interact with dopamine receptors, and interacts at ERα with potency insufficient to cause uterine effects or to alter the LH surge in rats. These mechanistic findings suggest high-dose-dependence of the toxicological effects secondary to kinetic overload, a hypothesis that can be tested when appropriate kinetic data are available that can be probed for the existence of a KMD. We applied Bayesian analysis with differential equations to information from kinetic studies on D4 to build statistical distributions of plausible values of the Km and Vmax for D4 elimination. From those distributions of likely Km and Vmax values, a set of Michaelis-Menten equations were generated that are likely to represent the slope function for the relationship between D4 exposure and blood concentration. The resulting Michaelis-Menten functions were then investigated using a change-point methodology known as the "kneedle" algorithm to identify the probable KMD range. We validated our Km and Vmax using out of sample data. Analysis of the Michaelis-Menten elimination curve generated from those Vmax and Km values indicates a KMD with an interquartile range of 230.0-488.0 ppm [2790-5920 mg/m3; 9.41-19.96 µM]. The KMD determined here for D4 is consistent with prior work indicating saturation of D4 metabolism at approximately 300 ppm [3640 mg/m3; 12.27 µM] and supports the hypothesis that many adverse effects of D4 arise secondary to high-dose-dependent events, likely due to mechanisms of action that cannot occur at concentrations below the KMD. Regulatory methods to evaluate D4 for human health protection should avoid endpoint data from rodents exposed to D4 above the KMD range and future toxicological testing should focus on doses below the KMD range.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc., and University of Florida College of Veterinary Medicine, Gainesville, FL, USA.
| | | | | |
Collapse
|
2
|
Marrugo-Padilla A, Atencio-Diaz AB, Barros-Domínguez MF, Guerra-Rivadeneira JD, Hernandez-Cuesta LV, Viloria-Gamez LM. Toxicokinetic Profiles and Potential Endocrine Disruption Effects at the Reproductive Level Promoted by Siloxanes Used in Consumer Products. J Appl Toxicol 2024. [PMID: 39375180 DOI: 10.1002/jat.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Siloxanes, commonly known as silicones, are polymeric compounds made up of silicon and oxygen atoms bonded together alternately. Within this group of substances are linear methyl-siloxanes and cyclic methyl-siloxanes, with octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) being the most produced and used industrially. Due to their versatility, high production volume, stability, and local presence in environmental matrices and biological fluids such as breast milk, fat, and plasma, siloxanes have been considered persistent organic pollutants, representing a public health problem. This represents a public health concern, especially when different investigations have reported potential endocrine effects at the reproductive level in experimental animals exposed to D4 and D5. The objective of this study was to review the potential reproductive and endocrine effects derived from siloxanes present in personal care products (PCPs). The results of the literature review confirmed that D4 and D5 were the most used siloxanes as additives in PCP because they improve the emollient properties of the cosmetic and the physical appearance of hair and skin. Similarly the toxicological effects of siloxanes, particularly D4, D5, and D6 included significant endocrine disruption, reproductive toxicity, and liver toxicity. Studies in SD and F-344 rats, commonly used to assess these effects, have shown that D4 has low estrogenic activity, binding to ER-α receptors, whereas D5 does not bind to estrogen receptors. D4 exposure has been associated with increased uterine weight and estrous cycle alterations, leading to prolonged exposure to estrogens, which raises the risk of endometrial hyperproliferation and carcinogenesis. Recent research highlights that D5 exposure disrupts follicle growth, endometrial receptivity, and steroidogenesis, resulting in infertility and hormonal imbalances, potentially causing disorders like endometriosis and increased cancer risk. Chronic exposure to D5 has been linked to the development of uterine endometrial adenocarcinoma, with higher doses further elevating this risk.
Collapse
Affiliation(s)
- Albeiro Marrugo-Padilla
- Grupo TOXSA, Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Colombia
| | | | | | | | | | | |
Collapse
|
3
|
Kim J, McNett DA, McClymont EL, Courtemanche MA. Fate of dimethylsilanediol (DMSD) via indirect photolysis in water. CHEMOSPHERE 2024; 362:142670. [PMID: 38909861 DOI: 10.1016/j.chemosphere.2024.142670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Dimethylsilanediol (DMSD) is the common degradation product of ubiquitous polydimethylsiloxane (PDMS) and volatile methylsiloxanes (VMS) in water and soil. Given the high solubility of DMSD in water, the further degradation of DMSD in this compartment is of particular importance. While DMSD appears relatively resistant to degradation in standard hydrolysis or biodegradation studies, it may degrade by indirect photolysis in surface waters through oxidation by hydroxyl radicals. The formation of hydroxyl radicals is governed by nitrate ions or other promoters in the presence of sunlight. In this study, we investigated the impact of nitrate ions on the oxidative decomposition of DMSD in water under simulated solar light. When exposed to solar light, DMSD can degrade all the way to the natural, mineralized substances, namely carbon dioxide (in the form of carbonic acid) and silicic acid, via the intermediate methylsilanetriol (MST).
Collapse
Affiliation(s)
- Jaeshin Kim
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA.
| | - Debra A McNett
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA.
| | - Elizabeth Lynn McClymont
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA.
| | | |
Collapse
|
4
|
He Y, Cheng J, Lyu Y, Tang Z. Uptake and elimination of methylsiloxanes in hens after oral exposure: Implication for risk estimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168838. [PMID: 38030011 DOI: 10.1016/j.scitotenv.2023.168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Methylsiloxanes are accumulated easily in aquatic organisms and may pose potential risks. However, available information on their uptake and accumulation in terrestrial species remains scarce. This study investigated the uptake, elimination and accumulation of eight typical methylsiloxanes in hens after a single oral exposure. At 1440 min after oral exposure, methylsiloxanes were mainly accumulated in kidney, liver and ovary, representing for 29.5 %, 20.4 % and 17.4 % of the summed methylsiloxanes in all tissues, respectively; all investigated chemicals were also detected in brains and unformed yolks. We found much higher mass uptake fractions (MUFs) of cyclic (27.5-66.5 %) than linear chemicals (9.9-17.3 %) by hens via this exposure, and the observed MUFs of individual cyclic congeners were comparable to the higher values of those reported for rats or fish previously. However, the metabolic half-life (t1/2) of these chemicals in hen tissues were in the range of 1.04-57.5 h based on kinetic analyses, indicating higher clearances in comparison with those reported for fish and rats. More research is needed on the metabolic mechanism of these chemicals in hens. Our findings provide important information for further understanding of transportation and transformation of these chemicals in terrestrial organisms and the associated potential risks.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
5
|
Lee J, Kim K, Park SM, Kwon JS, Jeung EB. Effects of Decamethylcyclopentasiloxane on Reproductive Systems in Female Rats. TOXICS 2023; 11:302. [PMID: 37112528 PMCID: PMC10143965 DOI: 10.3390/toxics11040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The female reproductive system becomes fertile through the action of hormones involved in the hypothalamic-pituitary-ovarian axis. On the other hand, estrogen-like endocrine disruptors released into the environment come into contact with humans by various routes and affect the reproductive system. Exposure to these chemicals can cause problems with the reproductive process, from egg ovulation to implantation, or cause female reproductive diseases. These reproductive problems cause infertility. Decamethylcyclopentasiloxane (D5) is used for lubrication in silicone polymers, households, and personal care products. In the case of D5, it is discharged through factory wastewater and can bioaccumulate. Therefore, it accumulates in the human body. In this study, D5 was administered orally for four weeks to determine the effects of D5 on the reproductive process. As a result, D5 increases the number of follicles in the ovary and suppresses the expression of genes related to the growth of follicles. In addition, it increases the gonadotropin hormone, inducing estradiol enhancement and progesterone reduction. Because of these changes in the reproductive system when exposed to D5, the industry should reconsider using D5.
Collapse
Affiliation(s)
- Jimin Lee
- College of Veterinary Medicine, Chungbuk National University, Chengju 28644, Republic of Korea
| | - Kangmin Kim
- College of Veterinary Medicine, Chungbuk National University, Chengju 28644, Republic of Korea
| | - Seon-Mi Park
- College of Veterinary Medicine, Chungbuk National University, Chengju 28644, Republic of Korea
| | | | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Chengju 28644, Republic of Korea
| |
Collapse
|
6
|
Schmitt BG, Tobin J, McNett DA, Kim J, Durham J, Plotzke KP. Comparative pharmacokinetic studies of 14C-octamethylcyclotetrasiloxane ( 14C-D4) in Fischer 344 and Sprague Dawley CD rats after single and repeated inhalation exposure. Toxicol Lett 2022; 373:13-21. [PMID: 36332816 DOI: 10.1016/j.toxlet.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Octamethylcyclotetrasiloxane (D4) is a high production volume chemical that has been subject to thorough toxicological investigations. Animal studies with the substance were conducted with either Fischer 344 or Sprague Dawley CD rats. While the pharmacokinetic fate of D4 in Fischer rats is well understood, little information exists on Sprague Dawley CD rats, where reproductive effects have been demonstrated. The objective of this study was to explore the pharmacokinetic behavior in both rats, and to identify potential strain-specific differences. Fischer and Sprague Dawley CD rats were exposed for six hours to 700 ppm of 14C-D4 vapor either with or without preceding 14-day exposure to non-radiolabeled D4. Time-course data in blood, tissues and excreta were obtained through 168 h post-exposure and analyzed for both total radioactivity and parent D4. The data confirm that repeated exposure results in increased metabolism in both rat strains, confirming the findings of earlier studies of auto-induction of CYP2B1/2 by D4. The results also indicate that D4 is subject to strain-specific pharmacokinetic behavior, and that Fischer rats appear to metabolize D4 to a greater extent than Sprague Dawley CD rats.
Collapse
Affiliation(s)
- Barbara G Schmitt
- Dow Silicones Belgium SPRL, 7170 Seneffe, Belgium; Evonik Operations GmbH, 45127 Essen, Germany.
| | - Joseph Tobin
- The Dow Chemical Company, Midland, MI 48674, United States; Du Pont, Midland, MI 48686, United States
| | - Debra A McNett
- The Dow Chemical Company, Midland, MI 48674, United States
| | - Jaeshin Kim
- The Dow Chemical Company, Midland, MI 48674, United States
| | - Jeremy Durham
- The Dow Chemical Company, Midland, MI 48674, United States
| | | |
Collapse
|
7
|
Andersen ME, Guerrero T. Assessing Modes of Action, Measures of Tissue Dose and Human Relevance of Rodent Toxicity Endpoints with Octamethylcyclotetrasiloxane (D4). Toxicol Lett 2022; 357:57-72. [PMID: 34995712 DOI: 10.1016/j.toxlet.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Octamethylcyclotetrasiloxane (D4), a highly lipophilic, volatile compound with low water solubility, is metabolized to lower molecular weight, linear silanols. Toxicity has been documented in several tissues in animals following mixed vapor/aerosol exposures by inhalation at near saturating vapor concentrations or with gavage dosing in vegetable oil vehicles. These results, together with more mechanism-based studies and detailed pharmacokinetic information, were used to assess likely modes of action (MOAs) and the tissue dose measures of D4 and metabolites that would serve as key events leading to these biological responses. This MOA analysis indicates that pulmonary effects arise from direct epithelial contact with mixed vapor/aerosol atmospheres of D4; liver hypertrophy and hepatocyte proliferation arise from adaptive, rodent-specific actions of D4 with nuclear receptor signaling pathways; and, nephropathy results from silanol metabolites binding with alpha-2μ globulin (a rat specific protein). At this time, the MOAs of other liver effects - pigment accumulation and bile duct hyperplasia (BDH) preferentially observed in Sprague-Dawley (SD) rats- are not known. Hypothalamic actions of D4 delaying the rat mid-cycle gonadotrophin releasing hormone (GnRH) surge that result in reproductive effects and subsequent vaginal/uterine/ovarian tissue responses, including small increases in incidence of benign endometrial adenomas, are associated with prolongation of endogenous estrogen exposures due to delays in ovulation. Human reproduction is not controlled by a mid-cycle GnRH surge. Since the rodent-specific reproductive and the vaginal/uterine/ovarian tissue responses are not relevant for risk assessments in human populations, D4 should neither be classified as a CMR (i.e., carcinogenic, mutagenic, or toxic for reproduction) substance nor be regarded as an endocrine disruptor. Bile duct hyperplasia (BDH) and pigment accumulation in liver seen in SD rats are endpoints that could serve to define a Benchmark Dose or No-Observed-Effect-Level (NOEL) for D4.
Collapse
Affiliation(s)
- Melvin E Andersen
- Andersen ToxConsulting LLC, 424 Granite Lake Ct., Denver, NC 28037, United States.
| | - Tracy Guerrero
- American Chemistry Council Director, Silicones, Environmental, Health, and Safety Center, 700 2nd Street, NE, Washington, DC, 20002, United States.
| |
Collapse
|
8
|
Fremlin KM, Elliott JE, Martin PA, Harner T, Saini A, Gobas FAPC. Fugacity-Based Trophic Magnification Factors Characterize Bioaccumulation of Cyclic Methyl Siloxanes within an Urban Terrestrial Avian Food Web: Importance of Organism Body Temperature and Composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13932-13941. [PMID: 34590828 DOI: 10.1021/acs.est.1c04269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trophic magnification of cyclic volatile methyl siloxanes (cVMS) in a terrestrial food web was investigated by measuring concentrations of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) and two reference chemicals within air and biota samples from an avian food web located in a mixed urban-agricultural landscape. Terrestrial trophic magnification factors derived from lipid normalized concentrations (TMFLs) for D5 and D6 were 0.94 (0.17 SE) and 1.1 (0.23 SE) and not statistically different from 1 (p > 0.05); however, the TMFL of D4 was 0.62 (0.11 SE) and statistically less than 1 (p < 0.001). TMFLs of PCB-153 and p,p'-DDE were 5.6 (2.2 SE) and 6.1 (2.8 SE) and statistically greater than 1 (p < 0.001). TMFLs of cVMS in this terrestrial system were similar to those reported in aquatic systems. However, trophic magnification factors derived on a fugacity basis (TMFFs), which recognize differences in body temperature and lipid composition between organisms, were greater than corresponding TMFLs primarily because a temperature-induced thermodynamic biomagnification of hydrophobic chemicals occurs when endothermic organisms consume poikilothermic organisms. Therefore, we recommend that biomagnification studies of food webs including endothermic and poikilothermic organisms incorporate differences in body temperature and tissue composition to accurately characterize the biomagnification potential of chemicals.
Collapse
Affiliation(s)
- Katharine M Fremlin
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Rd., R.R. #1, Delta, BC V4K 3N2, Canada
| | - Pamela A Martin
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Tom Harner
- Environment and Climate Change Canada, Air Quality Processes Research Section, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Amandeep Saini
- Environment and Climate Change Canada, Air Quality Processes Research Section, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Frank A P C Gobas
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
9
|
Fromme H, Witte M, Fembacher L, Gruber L, Hagl T, Smolic S, Fiedler D, Sysoltseva M, Schober W. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven. ENVIRONMENT INTERNATIONAL 2019; 126:145-152. [PMID: 30798195 DOI: 10.1016/j.envint.2019.01.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Linear and cyclic volatile methylsiloxanes (l-VMS and c-VMS) are man-made chemicals with no natural source. They have been widely used in cosmetics, personal care products, coatings and many other products. As a consequence of their wide use, VMS can be found in different environmental media, as well as in humans. We bought 14 new silicone baking moulds and 3 metallic moulds from the market and used them in different baking experiments. Four of the silicone baking moulds were produced in Germany, two in Italy, four in China, and for the other moulds were no information available. The metal forms were all produced in Germany. VMS were measured in the indoor air throughout the baking process and at the edge and in the center of the finished cakes using a GC/MS system. Additionally, the particle number concentration (PNC) and particle size distribution were measured in the indoor air. The highest median concentrations of VMS were observed immediately following baking: 301 μg/m3 of D7, 212 μg/m3 of D6, and 130 μg/m3 of D8. The silicone moulds containing the highest concentrations of c-VMS corresponded with distinctly higher concentrations of the compounds in indoor air. Using a mould for more than one baking cycle reduced the indoor air concentrations substantially. Samples collected from the edge of the cake had higher concentrations relative to samples from the center, with a mean initial concentration of 6.6 mg/kg of D15, 3.9 mg/kg of D9, 3.7 mg/kg of D12, and 4.8 mg/kg of D18. D3 to D5 were measured only at very low concentrations. Before starting the experiment, an average PNC of 7300 particles/cm3 was observed in the room's air, while a PNC of 140,000 particles/cm3 was observed around the electric stove while it was baking, but this PNC slowly decreased after the oven was switched off. Baking with 4 of the moulds exceeded the German indoor precaution guide value for c-VMS, but the health hazard guide value was not reached during every experiment. Compared to other exposure routes, c-VMS contamination of cake from silicone moulds seems to be low, as demonstrated by the low concentrations of D4 and D6 measured. For less volatile c-VMS > D6 the results of the study indicate that food might play a more important role for daily intake. As a general rule, silicone moulds should be used only after precleaning and while strictly following the temperature suggestions of the producers.
Collapse
Affiliation(s)
- Hermann Fromme
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich, Ziemssenstrasse 1, D-80336, Munich, Germany.
| | - Matthias Witte
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Ludwig Fembacher
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Ludwig Gruber
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Tanja Hagl
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Sonja Smolic
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Dominik Fiedler
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Marina Sysoltseva
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| |
Collapse
|