1
|
Sandoval-Castellanos AM, Ke Y, Dam TM, Maverakis E, Mannis MJ, Wang XJ, Zhao M. A Practical and Safe Model of Nitrogen Mustard Injury in Cornea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619116. [PMID: 39484372 PMCID: PMC11527019 DOI: 10.1101/2024.10.18.619116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Purpose Sulfur mustard (SM) is an alkylating agent used in warfare and terrorism that inflicts devastating ocular injuries. Although the clinical symptoms are well described, the underlying mechanisms are not fully understood, hindering the development of effective treatments. One major roadblock is the lack of a suitable model due to the extremely hazardous nature of SM, which requires strict safety measures. As a safe and practical alternative, we report a novel model that uses mechlorethamine (nitrogen mustard) gel, an FDA-approved topical chemotherapeutic administered by patients at home. Here we demonstrate its suitability to induce mustard corneal injury in any laboratory. Methods Ex vivo porcine corneas were injured with mechlorethamine gel. Hematoxylineosin staining, and immunohistochemistry were performed to evaluate histopathology of SM-like corneal injuries: epithelium thickness and stromal separation, keratocyte and inflammatory cell counts, and expression of inflammation and fibrosis markers. Results This model showed the characteristic histopathology and expression of cyclooxygenase-2 (inflammation) and fibronectin-1 (fibrosis), which were consistent with other well-established SM-like corneal injury models. Conclusion Given its ease of implementation and safety, this mechlorethamine model could be used to study the full course of mustard corneal injuries. This model would greatly facilitate mustard injury research, shedding light on new knowledge that would increase our understanding of mustard ocular injuries while investigating novel therapeutics. Translational relevance this model will allow safe evaluation of SM-like corneal injuries within 24 hours, facilitating the identification of early/new molecules that might help to develop novel treatments which could be readily translated into the clinic.
Collapse
Affiliation(s)
- Ana M. Sandoval-Castellanos
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
| | - Yao Ke
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, California, 95616, USA
| | - Tiffany M. Dam
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
| | - Emanual Maverakis
- Department of Dermatology, Institute for Regenerative Cures, School of Medicine, University of California, Davis, California, 95817, USA
| | - Mark J. Mannis
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
| | - Xiao-Jing Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, California, 95616, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
- Department of Dermatology, Institute for Regenerative Cures, School of Medicine, University of California, Davis, California, 95817, USA
| |
Collapse
|
2
|
Poudel S, Kaffash E, Zhao L, Pangeni R, Chow WN, Xu Q. Dexamethasone sodium phosphate loaded nanoparticles for prevention of nitrogen mustard induced corneal injury. Exp Eye Res 2024; 243:109902. [PMID: 38641196 PMCID: PMC11184523 DOI: 10.1016/j.exer.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.
Collapse
Affiliation(s)
- Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ehsan Kaffash
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Long Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Woon Nam Chow
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
3
|
Kant R, Mishra N, Kandhari K, Saba L, Michel C, Reisdorph R, Tewari-Singh N, Pantcheva MB, Petrash JM, Agarwal C, Agarwal R. Dexamethasone targets actin cytoskeleton signaling and inflammatory mediators to reverse sulfur mustard-induced toxicity in rabbit corneas. Toxicol Appl Pharmacol 2024; 483:116834. [PMID: 38266871 PMCID: PMC10923037 DOI: 10.1016/j.taap.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.
Collapse
Affiliation(s)
- Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Mina B Pantcheva
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Mishra N, Kant R, Kandhari K, Ammar DA, Tewari-Singh N, Pantcheva MB, Petrash JM, Agarwal C, Agarwal R. Nitrogen Mustard-Induced Ex Vivo Human Cornea Injury Model and Therapeutic Intervention by Dexamethasone. J Pharmacol Exp Ther 2024; 388:484-494. [PMID: 37474260 PMCID: PMC10801761 DOI: 10.1124/jpet.123.001760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Sulfur mustard (SM), a vesicating agent first used during World War I, remains a potent threat as a chemical weapon to cause intentional/accidental chemical emergencies. Eyes are extremely susceptible to SM toxicity. Nitrogen mustard (NM), a bifunctional alkylating agent and potent analog of SM, is used in laboratories to study mustard vesicant-induced ocular toxicity. Previously, we showed that SM-/NM-induced injuries (in vivo and ex vivo rabbit corneas) are reversed upon treatment with dexamethasone (DEX), a US Food and Drug Administration-approved, steroidal anti-inflammatory drug. Here, we optimized NM injuries in ex vivo human corneas and assessed DEX efficacy. For injury optimization, one cornea (randomly selected from paired eyes) was exposed to NM: 100 nmoles for 2 hours or 4 hours, and 200 nmoles for 2 hours, and the other cornea served as a control. Injuries were assessed 24 hours post NM-exposure. NM 100 nmoles exposure for 2 hours was found to cause optimal corneal injury (epithelial thinning [∼69%]; epithelial-stromal separation [6-fold increase]). In protein arrays studies, 24 proteins displayed ≥40% change in their expression in NM exposed corneas compared with controls. DEX administration initiated 2 hours post NM exposure and every 8 hours thereafter until 24 hours post-exposure reversed NM-induced corneal epithelial-stromal separation [2-fold decrease]). Of the 24 proteins dysregulated upon NM exposure, six proteins (delta-like canonical Notch ligand 1, FGFbasic, CD54, CCL7, endostatin, receptor tyrosine-protein kinase erbB-4) associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, showed significant reversal upon DEX treatment (Student's t test; P ≤ 0.05). Complementing our animal model studies, DEX was shown to mitigate vesicant-induced toxicities in ex vivo human corneas. SIGNIFICANCE STATEMENT: Nitrogen mustard (NM) exposure-induced injuries were optimized in an ex vivo human cornea culture model and studies were carried out at 24 h post 100 nmoles NM exposure. Dexamethasone (DEX) administration (started 2 h post NM exposure and every 8 h thereafter) reversed NM-induced corneal injuries. Molecular mediators of DEX action were associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, indicating DEX aids wound healing via reversing vesicant-induced neovascularization (delta-like canonical Notch ligand 1 and FGF basic) and leukocyte infiltration (CD54 and CCL7).
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - David A Ammar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - Mina B Pantcheva
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - J Mark Petrash
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.) University of Colorado-Anschutz Medical Campus, Aurora, Colorado; Lions Eye Institute for Transplant and Research, Tampa, Florida (D.A.A.); and Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan (N.T.-S.)
| |
Collapse
|
5
|
Mishra N, Kant R, Kandhari K, Tewari-Singh N, Anantharam P, Croutch CR, Pantcheva MB, Petrash JM, Araj H, Agarwal C, Agarwal R. Establishing a Dexamethasone Treatment Regimen To Alleviate Sulfur Mustard-Induced Corneal Injuries in a Rabbit Model. J Pharmacol Exp Ther 2024; 388:469-483. [PMID: 37316330 PMCID: PMC10801779 DOI: 10.1124/jpet.123.001680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Poojya Anantharam
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Claire R Croutch
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Mina B Pantcheva
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - J Mark Petrash
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Houmam Araj
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| |
Collapse
|
6
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
7
|
Kandhari K, Kant R, Mishra N, Agarwal C, Agarwal R. Phenylarsine oxide induced corneal injury involves oxidative stress mediated unfolded protein response and ferroptotic cell death: Amelioration by NAC. Free Radic Biol Med 2023; 209:265-281. [PMID: 38088264 PMCID: PMC10719503 DOI: 10.1016/j.freeradbiomed.2023.10.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
Phenylarsine oxide (PAO), an analog of lewisite, is a highly toxic trivalent arsenical and a potential chemical warfare agent. PAO-induced toxicity has been studied in lung, liver, and skin tissues. Nevertheless, very few studies have been published to comprehend the impact of PAO-induced toxicity on ocular tissues, even though eyes are uniquely vulnerable to injury by vesicants. Notably, arsenical vesicants such as lewisite have been shown to cause edema of eyelids, inflammation, massive corneal necrosis, and blindness. Accordingly, human corneal epithelial cells were used to study the effects of PAO exposure. PAO (100 and 200 nM) induced significant oxidative stress in corneal epithelial cells. Simultaneous treatment with N-acetyl-l-cysteine (NAC), an FDA-approved antioxidant, reversed the PAO-induced toxicity in human corneal epithelial cells. Furthermore, oxidative stress induction by PAO was accompanied by unfolded protein response (UPR) signaling activation and ferroptotic cell death. Further, to validate the findings of our in vitro studies, we optimized injury biomarkers and developed an ex vivo rabbit corneal culture model of PAO exposure. Investigations using PAO in ex vivo rabbit corneas revealed similar results. PAO (5 or 10 μg) for 3, 5, and 10 min caused moderate to extensive corneal epithelial layer degradation and reduced the epithelial layer thickness in a concentration- and time-dependent manner. Similar to human corneal cells, injuries by PAO in ex vivo cultured rabbit corneas were also associated with elevated oxidative stress, UPR signaling, and ferroptosis induction. NAC mitigated PAO-induced corneal injuries in rabbit ex vivo cornea culture as well. The reversal of PAO toxicity upon NAC treatment observed in our studies could be attributed to its antioxidant properties. These findings suggest that PAO exposure can cause significant corneal injury and highlight the need for further mechanistic studies to better understand the pathobiology of different arsenical vesicants, including PAO and lewisite.
Collapse
Affiliation(s)
- Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Mishra N, Agarwal R. Research models of sulfur mustard- and nitrogen mustard-induced ocular injuries and potential therapeutics. Exp Eye Res 2022; 223:109209. [PMID: 35961426 DOI: 10.1016/j.exer.2022.109209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Sulfur mustard (SM) is a notorious, bifunctional alkylating vesicant that was first used in warfare during World War I in 1917 and since then has been deployed in numerous skirmishes with its most recent documented use being during the Middle Eastern conflicts. Apart from its use in combat and terrorist activities, continual threat of accidental exposure from old stockpiles and improperly discarded munitions is ever present, especially to the innocent and unassuming civilian populations. SM can cause devastating injuries, depending on the dosage of SM exposure, route of exposure, as well as the physiological conditions of the individuals exposed. The most common routes of exposure are ocular, dermal, and exposure to the lungs and respiratory tissues through inhalation. Eyes are the most susceptible organ to SM-induced toxicities owing to their high moisture content and rapidly dividing cells. Additionally, ocular injury causes the most expeditious disablement of individuals even upon whole-body exposures. Therefore, it is imperative to understand the mechanisms underlying SM-induced ocular toxicity and design therapeutic interventions to prevent/mitigate ocular injuries. Ocular SM exposure may cause a wide range of symptoms such as inflammation, lacrimation, itching, dryness, photophobia, edema of the cornea/sclera/retina/iris, conjunctivitis, degradation of the corneal layer, fusion of two or more ocular layers, neovascularization, fibrosis, and temporary or permanent structural damage to one or more ocular layers. These symptoms may lead to vision impairments, resulting in partial or complete blindness that may be permanent. The highly toxic and exceedingly notorious nature of SM makes it a highly regulated chemical, requiring very expensive licensing, security, and safety requirements; thus, the more easily accessible analogue, nitrogen mustard (NM) that mimics SM-induced toxicity and injuries is employed in plethora of studies conducted in different animal models and culture systems. This review provides a comprehensive account of the injuries and symptoms that occur upon ocular SM exposures in human patients as well as studies in animal (in vivo, ex vivo) and cell (in vitro) models of SM and NM ocular exposures. Special emphasis has been laid on highlighting the strengths and lacunae in the research as well as the possible unexplored avenues of mechanisms underlying mustard-induced ocular injury that can be explored in future research endeavors. Furthermore, development of therapeutic interventions and targets of interest in the ocular system exposed to SM and NM, based on studies in human patients as well as in vivo, ex vivo, and in vitro models has been discussed in great depth, providing a valuable knowledge database to delineate pathways associated with vesicant-induced toxicity, and strategies/diagnostic tools against SM-induced toxicity.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Goswami DG, Mishra N, Kant R, Agarwal C, Ammar DA, Petrash JM, Tewari-Singh N, Agarwal R. Effect of dexamethasone treatment at variable therapeutic windows in reversing nitrogen mustard-induced corneal injuries in rabbit ocular in vivo model. Toxicol Appl Pharmacol 2022; 437:115904. [PMID: 35108561 PMCID: PMC8849585 DOI: 10.1016/j.taap.2022.115904] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Nitrogen mustard (NM) is an analogue of the potent vesicating agent sulfur mustard, with well-established ocular injury models in rabbit eyes to study vesicant-induced ocular toxicity. The effects of NM-exposure to eyes may include irritation, redness, inflammation, fibrosis, epithelial degradation, blurred vision, partial/complete blindness, which may be temporary or permanent, depending on the route, duration, and dosage of exposure. Effective countermeasures against vesicant exposure are presently not available and are warranted in case of any terrorist activity or accidental leakage from stockpiles. Herein, our focus was to evaluate whether dexamethasone (DEX), an FDA approved potent corticosteroid with documented anti-inflammatory activities, could be an effective treatment modality. Accordingly, utilizing NM-induced corneal injuries in rabbit ocular in vivo model, we examined and compared the efficacy of DEX treatments when administration was started at early (2 h), intermediate (4 h), and late (6 h) therapeutic windows of intervention after NM-exposure and administered every 8 h thereafter. The effects of NM-exposure and DEX treatments were evaluated on clinical (corneal opacity, ulceration, and neovascularization), biological (epithelial thickness, epithelial-stromal separation, blood vessels density, and inflammatory cell and keratocyte counts) and molecular (COX-2 and VEGF expression) parameters, at day 1, 3, 7 and 14. Results indicated that DEX treatment markedly and effectively reversed the NM-induced injury markers in rabbit corneas. Early administration of DEX at 2 h was found to be most effective in reversing NM-induced corneal injuries, followed by DEX 4 h and DEX 6 h administration initiation, indicating that DEX has best efficacy at the early therapeutic window in our study model.
Collapse
Affiliation(s)
- Dinesh G. Goswami
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neha Mishra
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - J. Mark Petrash
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America,Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
10
|
Goswami DG, Mishra N, Kant R, Agarwal C, Croutch CR, Enzenauer RW, Petrash MJ, Tewari-Singh N, Agarwal R. Pathophysiology and inflammatory biomarkers of sulfur mustard-induced corneal injury in rabbits. PLoS One 2021; 16:e0258503. [PMID: 34637469 PMCID: PMC8509852 DOI: 10.1371/journal.pone.0258503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfur mustard (SM) is a cytotoxic, vesicating, chemical warfare agent, first used in 1917; corneas are particularly vulnerable to SM exposure. They may develop inflammation, ulceration, neovascularization (NV), impaired vision, and partial/complete blindness depending upon the concentration of SM, exposure duration, and bio-physiological conditions of the eyes. Comprehensive in vivo studies have established ocular structural alterations, opacity, NV, and inflammation upon short durations (<4 min) of SM exposure. In this study, detailed analyses of histopathological alterations in corneal structure, keratocytes, inflammatory cells, blood vessels, and expressions of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and cytokines were performed in New Zealand white rabbits, in a time-dependent manner till 28 days, post longer durations (5 and 7 min) of ocular SM exposure to establish quantifiable endpoints of injury and healing. Results indicated that SM exposure led to duration-dependent increases in corneal thickness, opacity, ulceration, epithelial-stromal separation, and epithelial degradation. Significant increases in NV, keratocyte death, blood vessels, and inflammatory markers (COX-2, MMP-9, VEGF, and interleukin-8) were also observed for both exposure durations compared to the controls. Collectively, these findings would benefit in temporal delineation of mechanisms underlying SM-induced corneal toxicity and provide models for testing therapeutic interventions.
Collapse
Affiliation(s)
- Dinesh G. Goswami
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neha Mishra
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Claire R. Croutch
- Medical Countermeasures Division, MRIGlobal, Kansas City, Missouri, United States of America
| | - Robert W. Enzenauer
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mark J. Petrash
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Singh SK, Goswami DG, Wright HN, Kant R, Ali IA, Braucher LN, Klein JA, Godziela MG, Ammar DA, Pate KM, Tewari-Singh N. Effect of supersaturated oxygen emulsion treatment on chloropicrin-induced chemical injury in ex vivo rabbit cornea. Toxicol Lett 2021; 349:124-133. [PMID: 34153409 DOI: 10.1016/j.toxlet.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023]
Abstract
With a possibility for the use of chemical weapons in battlefield or in terrorist activities, effective therapies against the devastating ocular injuries, from their exposure, are needed. Oxygen plays a vital role in ocular tissue preservation and wound repair. We tested the efficacy of supersaturated oxygen emulsion (SSOE) in reducing ex vivo corneal and keratocyte injury from chloropicrin (CP). CP, currently used as a pesticide, is a chemical threat agent like the vesicating mustard agents and causes severe corneal injury. Since our previous study in human corneal epithelial cells showed the treatment potential of SSOE (55 %), we further tested its efficacy in an ex vivo CP-induced rabbit corneal injury model. Corneas were exposed to CP (700 nmol) for 2 h, washed and cultured with or without SSOE for 24 h or 96 h. At 96 h post CP exposure, SSOE treatment presented a healing tendency of the corneal epithelial layer, and abrogated the CP-induced epithelial apoptotic cell death. SSOE treatment also reduced the CP induced DNA damage (H2A.X phosphorylation) and inflammatory markers (e.g. MMP9, IL-21, MIP-1β, TNFα). Further examination of the treatment efficacy of SSOE alone or in combination with other therapies in in vivo cornea injury models for CP and vesicants, is warranted.
Collapse
Affiliation(s)
- Satyendra K Singh
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Dinesh G Goswami
- University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, United States
| | - Holly N Wright
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Rama Kant
- University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, United States
| | - Izza A Ali
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Leah N Braucher
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Joshua A Klein
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - Madeline G Godziela
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States
| | - David A Ammar
- University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, United States
| | | | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI, 48824, United States.
| |
Collapse
|
12
|
Fuchs A, Giuliano EA, Sinha NR, Mohan RR. Ocular toxicity of mustard gas: A concise review. Toxicol Lett 2021; 343:21-27. [PMID: 33600921 DOI: 10.1016/j.toxlet.2021.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
Sulfur mustard (SM) is a chemical warfare agent that has been used throughout recent history and remains a threat today. Exposed soldiers and civilians experience a variety of symptoms primarily in the respiratory system, skin, and eyes. The ocular tissues are highly sensitive to damage by SM and undergo unique manifestations of acute, chronic, and delayed complications that can persist for months and years after exposure. The mechanisms of this unique mustard gas keratopathy are still not fully understood and animal models for the study of this disease are discussed. Recent advances in mechanisms of injury are included in this review. Ophthalmic manifestations of SM injury including persistent epithelial defects, limbal stem cell deficiency, corneal neovascularization, dry eye, and corneal opacification have been reported. A wide variety of medical and surgical therapies have been studied and are reviewed here along with potential future therapies.
Collapse
Affiliation(s)
- Allison Fuchs
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Elizabeth A Giuliano
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
13
|
Nischitha R, Shivanna MB. Antimicrobial activity and metabolite profiling of endophytic fungi in Digitaria bicornis (Lam) Roem. and Schult. and Paspalidium flavidum (Retz.) A. Camus. 3 Biotech 2021; 11:53. [PMID: 33489672 DOI: 10.1007/s13205-020-02590-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2020] [Indexed: 11/29/2022] Open
Abstract
Endophytic fungal occurrences were studied in aerial regions of Digitaria bicornis and Paspalidium flavidum by three isolation methods: potato dextrose agar (PDA), malt extract agar (MEA), and moist blotters. Seventy species of 29 genera of endophytic fungi in D. bicornis and 71 species of 30 genera in P. flavidum were documented. Endophytic fungal communities were grouped into 40 and 43 anamorphic ascomycetes (21 and 23 genera) and 20 teleomorphic ascomycetes (6 and 7 genera) in D. bicornis and P. flavidum, respectively. PDA supported the expression of larger number of fungal communities than MEA and MB; and P. flavidum hosted more number of endophytic fungi than D. bicornis. Seasons played an important role in supporting the assemblage of fungal endophytes. Endophytic fungal species richness and assemblages in plant regions were determined for alpha, beta, and gamma diversities. The ethyl acetate followed by methanolic extracts of certain fungal species showed good antagonistic and antibacterial activities. Among fungal endophytes, Curvularia protuberata and Penicillium citrinum exhibited high antagonistic and antibacterial activities. The high-resolution orbitrap liquid chromatography-mass spectrometry of ethyl acetate crude extracts of C. protuberata and P. citrinum revealed the presence of antifungal and antimicrobial, besides a host of compounds in the extracts. The present study indicated that grass endophytes are the sources of compounds with antimicrobial and other pharmacological activities.
Collapse
Affiliation(s)
- R Nischitha
- Department of PG Studies and Research in Applied Botany, School of Biosciences, Kuvempu University, Jnana Sahyadri 577 451, Shimoga, Shankaraghatta India
| | - M B Shivanna
- Department of PG Studies and Research in Applied Botany, School of Biosciences, Kuvempu University, Jnana Sahyadri 577 451, Shimoga, Shankaraghatta India
| |
Collapse
|
14
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
15
|
Acute corneal injury in rabbits following nitrogen mustard ocular exposure. Exp Mol Pathol 2019; 110:104275. [PMID: 31233733 DOI: 10.1016/j.yexmp.2019.104275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Sulfur mustard (SM), a potent vesicating chemical warfare agent, and its analog nitrogen mustard (NM), are both strong bi-functional alkylating agents. Eyes, skin, and the respiratory system are the main targets of SM and NM exposure; however, ocular tissue is most sensitive, resulting in severe ocular injury. The mechanism of ocular injury from vesicating agents' exposure is not completely understood. To understand the injury mechanism from exposure to vesicating agents, NM has been previously employed in our toxicity studies on primary human corneal epithelial cells and ex vivo rabbit cornea organ culture model. In the current study, corneal toxicity from NM ocular exposure (1%) was analyzed for up to 28 days post-exposure in New Zealand White male rabbits to develop an acute corneal injury model. NM exposure led to conjunctival and eyelid swelling within a few hours after exposure, in addition to significant corneal opacity and ulceration. An increase in total corneal thickness and epithelial degradation was observed starting at day 3 post-NM exposure, which was maximal at day 14 post-exposure and did not resolve until 28 days post-exposure. There was an NM-induced increase in the number of blood vessels and inflammatory cells, and a decrease in keratocytes in the corneal stroma. NM exposure resulted in increased expression levels of cyclooxygenase-2, Interleukin-8, vascular endothelial growth factor and Matrix Metalloproteinase 9 indicating their involvement in NM-induced corneal injury. These clinical, biological, and molecular markers could be useful for the evaluation of acute corneal injury and to screen for therapies against NM- and SM-induced ocular injury.
Collapse
|
16
|
Tumu HCR, Cuffari BJ, Pino MA, Palus J, Piętka-Ottlik M, Billack B. Ebselen oxide attenuates mechlorethamine dermatotoxicity in the mouse ear vesicant model. Drug Chem Toxicol 2018; 43:335-346. [DOI: 10.1080/01480545.2018.1488858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hemanta C. Rao Tumu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Benedette J. Cuffari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Maria A. Pino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
- Department of Clinical Specialties, NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Jerzy Palus
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Magdalena Piętka-Ottlik
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Blase Billack
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| |
Collapse
|