1
|
Chou X, Li X, Ma K, Shen Y, Min Z, Xiao W, Zhang J, Wu Q, Sun D. N-methyl-d-aspartate receptor 1 activation mediates cadmium-induced epithelial-mesenchymal transition in proximal tubular cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166955. [PMID: 37704144 DOI: 10.1016/j.scitotenv.2023.166955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) is a commonly found environmental pollutant and is known to damage multiple organs with kidneys being the most common one. N-methyl-d-aspartate receptor 1 (NMDAR1) is a ligand-gated ion channel that is highly permeable to calcium ion (Ca2+). Because Cd2+ and Ca2+ have structural and physicochemical similarities, whether and how Cd could interfere NMDAR1 function to cause renal epithelial cells dysfunction remains unknown. In this study, we investigated the role of NMDAR1 in Cd-induced renal damage and found that Cd treatment upregulated NMDAR1 expression and promoted epithelial-mesenchymal transition (EMT) in mouse kidneys in vivo and human proximal tubular epithelial HK-2 cells in vitro, which were accompanied with activation of the inositol-requiring enzyme 1 (IRE-1α) / spliced X box binding protein-1 (XBP-1s) pathway, an indicative of endoplasmic reticulum (ER) stress. Mechanistically, NMDAR1 upregulation by Cd promoted Ca2+ channel opening and Ca2+ influx, resulting in ER stress and subsequently EMT in HK-2 cells. Inhibition of NMDAR1 by pharmacological antagonist MK-801 significantly attenuated Cd-induced Ca2+ influx, ER stress, and EMT. Pretreatment with the IRE-1α/XBP-1s pathway inhibitor STF-083010 also restored the epithelial phenotype of Cd-treated HK-2 cells. Therefore, our findings suggest that NMDAR1 activation mediates Cd-induced EMT in proximal epithelial cells likely through the IRE-1α/XBP-1s pathway, supporting the idea that NMDAR1 could be a potential therapeutic target for Cd-induced renal damage.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Xiaohu Li
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Zhen Min
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jingbo Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Qing Wu
- Department of Toxicology, School of Public Health, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Daoyuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China.
| |
Collapse
|
2
|
Sun Y, Liu G, Li M, Wang L, He Z, Gu S. Study on the Correlation Between Regulatory Proteins of N 6-methyladenosine and Oxidative Damage in Cadmium-induced Renal Injury. Biol Trace Elem Res 2023; 201:2294-2302. [PMID: 35794303 DOI: 10.1007/s12011-022-03345-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
As a common environmental heavy metal pollutant, cadmium has been well evidenced to cause kidney damage; yet, the underlying mechanisms are still not fully clarified. In this study, cell viability of human renal tubular epithelial cell (HK-2) was determined by CCK-8 assay after treatment with CdSO4. Then, apoptotic morphology of cells was observed by Hoechst staining and level of reactive oxygen species (ROS) was detected by fluorescent probes. Subsequently, mRNA levels of Nrf2, HO-1, m6A methyltransferases (METTL3, METTL14, METTL16, WATP), m6A demethylases (FTO, ALKBH5), m6A methyl-binding proteins (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2) were detected by real-time polymerase chain reaction (RT-PCR), closely followed by correlation analysis between Nrf2 mRNA levels and m6A methyltransferases and demethylases. Lastly, protein expressions of Nrf2, METTL3, and FTO were tested by western blotting assay. The detection results demonstrated that the treatment of CdSO4 decreased viability while increased apoptosis rate. The Nrf2 mRNA level in CdSO4-treated cells was significantly increased when compared with that in the control cells, and the HO-1 mRNA level elevated with the increasing of CdSO4 concentrations. In addition, mRNA levels of METTL3, METTL14, METTL16, WTAP, FTO, and methyl-binding proteins in CdSO4-treated cells were all higher than those in corresponding control cells. Further determination showed that protein expressions of Nrf2, METTL3, and FTO were also upregulation under the treatment of CdSO4. Lastly, correlation analysis indicated that mRNA level of Nrf2 was positively correlated with mRNA levels of m6A methyltransferases and demethylases. In a word, our results demonstrated that the molecular changes of Nrf2 signaling pathway are correlated with the levels of m6A regulatory proteins, suggesting that there may be a regulatory relationship between Nrf2 signaling pathway and m6A regulatory proteins in the process of cadmium-induced renal cell cytotoxicity.
Collapse
Affiliation(s)
- Yifei Sun
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Mengzhu Li
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Lei Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
3
|
Hu Q, Zheng J, Xu XN, Gu C, Li W. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. ENVIRONMENTAL TOXICOLOGY 2022; 37:899-909. [PMID: 35044038 DOI: 10.1002/tox.23453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Qiaoni Hu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jifang Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xiao Na Xu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Du K, Zheng X, Lv J, Zhong X, Wei M, Liu M. Cordycepin exacerbates cadmium-induced neurotoxicity via promoting endoplasmic reticulum stress-associated apoptosis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Li Z, Chi H, Zhu W, Yang G, Song J, Mo L, Zhang Y, Deng Y, Xu F, Yang J, He Z, Yang X. Cadmium induces renal inflammation by activating the NLRP3 inflammasome through ROS/MAPK/NF-κB pathway in vitro and in vivo. Arch Toxicol 2021; 95:3497-3513. [PMID: 34510229 DOI: 10.1007/s00204-021-03157-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023]
Abstract
Cadmium (Cd) has been reported to induce kidney damage by triggering oxidative stress and inflammation. The NLR family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated a role in the pathogenesis of inflammation. However, the connection between Cd and NLRP3 inflammasome in the development of renal inflammation remains unknown. In this study, in vitro experiments based on the telomerase-immortalized human renal proximal-tubule epithelial cell line (RPTEC/TERT1) were carried out. Results revealed that CdCl2 (2-8 μM) increased ROS production and activated NLRP3, thereby enhancing secretion of IL-1β and IL-18 (P < 0.05). Knock-down of NLRP3 rescued the RPTEC/TERT1 cells from Cd-induced inflammatory damage. Cd activated the MAPK/NF-κB signaling pathway in RPTEC/TERT1 cells (P < 0.05). In addition, treatment with N-acetylcysteine (NAC) improved inflammation and blocked the upregulation of the MAPK/NF-κB signaling pathway. Pre-treatment with MAPK and NF-κB inhibitors also suppressed NLRP3 inflammasome activation (P < 0.05). Moreover, CdCl2 (25-00 mg/L) stimulated the MAPK/NF-κB signaling pathway, activated the NLRP3 inflammasome, and increased inflammatory response (P < 0.05) leading to renal injury in rats. Exposure to cadmium elevated serum levels of NLRP3 and IL-1β in populations (P < 0.05). Further analysis found that serum NLRP3 and IL-1β levels were positively correlated with urine cadmium (UCd) and urine N-acetyl-β-D-glucosaminidase (UNAG). Overall, Cd induced renal inflammation through the ROS/MAPK/NF-κB signaling pathway by activating the NLRP3 inflammasome. Our research thus provides new insights into the molecular mechanism that NLRP3 contributes to Cd-induced kidney damage.
Collapse
Affiliation(s)
- Ziyin Li
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huiqin Chi
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, Guangdong, People's Republic of China
| | - Guangyu Yang
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, Guangdong, People's Republic of China
| | - Jia Song
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lijun Mo
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yitian Zhang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yudi Deng
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Feifei Xu
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiani Yang
- Department of Preventive Medicine, Faculty of Medical Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhini He
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xingfen Yang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
6
|
Hao R, Song X, Sun-Waterhouse D, Tan X, Li F, Li D. MiR-34a/Sirt1/p53 signaling pathway contributes to cadmium-induced nephrotoxicity: A preclinical study in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117029. [PMID: 33823310 DOI: 10.1016/j.envpol.2021.117029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), as an environmental pollutant, can lead to nephrotoxicity. However, its nephrotoxicological mechanisms have not been fully elucidated. In this study, Cd (1.5 mg/kg body weight, gavaged for 4 weeks) was found to induce the renal damage in mice, based on indicators including Cd concentration, kidney index, serum creatinine and blood urea nitrogen levels, pro-inflammatory cytokines and their mRNA expressions, levels of Bcl-2, Bax and caspase9, and histopathological changes of the kidneys. Furthermore, Cd-caused detrimental changes through inducing inflammation and apoptosis via the miR-34a/Sirt1/p53 axis. This is the first report on the role of miR-34a/Sirt1/p53 axis in regulating Cd-caused apoptosis and nephrotoxicity in mice. The findings obtained in this study provide new insights into miRNA-based regulation of heavy metal induced-nephrotoxicity.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Xinyu Song
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China.
| |
Collapse
|
7
|
Zhang Y, Liu Z, He Q, Wu F, Xiao Y, Chen W, Jin Y, Yu D, Wang Q. Construction of Mode of Action for Cadmium-Induced Renal Tubular Dysfunction Based on a Toxicity Pathway-Oriented Approach. Front Genet 2021; 12:696892. [PMID: 34367254 PMCID: PMC8343180 DOI: 10.3389/fgene.2021.696892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Although it is recognized that cadmium (Cd) causes renal tubular dysfunction, the mechanism of Cd-induced nephrotoxicity is not yet fully understood. Mode of action (MOA) is a developing tool for chemical risk assessment. To establish the mechanistic MOA of Cd-induced renal tubular dysfunction, the Comparative Toxicogenomics Database (CTD) was used to obtain genomics data of Cd-induced nephrotoxicity, and Ingenuity® Pathway Analysis (IPA) software was applied for bioinformatics analysis. Based on the perturbed toxicity pathways during the process of Cd-induced nephrotoxicity, we established the MOA of Cd-induced renal tubular dysfunction and assessed its confidence with the tailored Bradford Hill criteria. Bioinformatics analysis showed that oxidative stress, DNA damage, cell cycle arrest, and cell death were the probable key events (KEs). Assessment of the overall MOA of Cd-induced renal tubular dysfunction indicated a moderate confidence, and there are still some evidence gaps to be filled by rational experimental designs.
Collapse
Affiliation(s)
- Yangchun Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qianmei He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Alshammari GM, Al-Qahtani WH, AlFaris NA, Albekairi NA, Alqahtani S, Eid R, Yagoub AEA, Al-Harbi LN, Yahya MA. Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2α. Biomed Pharmacother 2021; 141:111862. [PMID: 34246189 DOI: 10.1016/j.biopha.2021.111862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a key role in cadmium chloride (CdCl2)-induced nephrotoxicity. Sirtuin-1 (SIRT1) is a potent inhibitor of ER stress. In this study, we examined whether the protective effect of quercetin (QUR) against CdCl2-induced nephrotoxicity in rats involved modulation of SIRT1 and/or ER stress. Adult male rats were divided into five groups (n = 8, each) and treated for eight weeks as follows: control, control + QUR, CdCl2, CdCl2 + QUR, and CdCl2 + QUR + EX-527 (a SIRT1 inhibitor). Treatment of rats with QUR preserved the glomerulus and tubule structure, attenuated interstitial fibrosis, increased creatinine excretion, and reduced urinary levels of albumin, N-acetyl-β-D-glucosaminidase, and β2-microglobulin in CdCl2-treated rats. Concomitantly, QUR increased renal levels of Bcl-2, reduced mRNA levels of CHOP, and protein levels of Bax, caspase-3, and cleaved caspase-3, but failed to reduce the mRNA levels of GRP78, PERK, eIf2α, ATF-6, and xbp-1. QUR also reduced the renal levels of reactive oxygen species, tumour necrosis factor, and interleukin-6 and the nuclear activity of NF-κB in the control and CdCl2-treated rats but increased the nuclear activity of Nrf2 and levels of glutathione and manganese superoxide dismutase. Additionally, QUR increased the total levels and nuclear activity of SIRT1 and reduced the acetylation of eIf2α and xbp-1. The nephroprotective effects of QUR were abrogated by treatment with EX-527. Thus, QUR ameliorated CdCl2-induced nephrotoxicity through antioxidant and anti-inflammatory effects and suppressed ER stress mediated by the upregulation or activation of SIRT1-induced deacetylation of Nrf2, NF-κB p65, eIF2α, and xbp-1.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Wahidah H Al-Qahtani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Refaat Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Chou X, Ma K, Shen Y, Min Z, Wu Q, Sun D. Dual role of inositol-requiring enzyme 1α (IRE-1α) in Cd-induced apoptosis in human renal tubular epithelial cells: Endoplasmic reticulum stress and STAT3 signaling activation. Toxicology 2021; 456:152769. [PMID: 33813002 DOI: 10.1016/j.tox.2021.152769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a nephrotoxicant that primarily damages renal proximal tubular cells. Endoplasmic reticulum (ER) stress is mechanistically linked to Cd-induced renal injury. Inositol-requiring enzyme 1 (IRE-1α) is the most conserved ER stress transducer protein, which has both kinase and endonuclease activities. This study aimed to investigate whether the two enzymatic activities of IRE-1α have different effects in its regulation of Cd-induced apoptosis. Human proximal tubular (HK-2) cells were treated with 20 μM CdCl2 for 0-24 h, and mice were fed with Cd-containing drinking water (100-400 mg/L) for 24 weeks. We found that Cd increased cell apoptosis in HK-2 cells and mouse kidneys in a time-dependent manner. Such cytotoxicity was correlated with activation of ER stress, evidenced by upregulation of IRE-1α and its target protein spliced X-box binding protein-1 (XBP-1 s). Interestingly, inhibition of IRE-1α kinase activity by KIRA6 was more protective against Cd-induced apoptosis than inhibition of its RNase activity by STF-083010. Mechanistically, Cd promoted the binding of IRE-1α with signal transducer and activator of transcription-3 (STAT3) leading to elevated phosphorylation of STAT3 at Ser727 and thus inactivation of STAT3 signaling, which resulted in aggravation of Cd-induced apoptosis in HK-2 cells. Collectively, our findings indicate that IRE-1α coordinate ER stress and STAT3 signaling in mediating Cd-induced renal toxicity, suggesting that targeting IRE-1α might be a potential therapeutic approach for Cd-induced renal dysfunction and disease.
Collapse
Affiliation(s)
- Xin Chou
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China; School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, 200032, China
| | - Kunpeng Ma
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yue Shen
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Zhen Min
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Qing Wu
- School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, 200032, China.
| | - Daoyuan Sun
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
10
|
Ma Y, Ran D, Cao Y, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. The effect of P2X7 on cadmium-induced osteoporosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124251. [PMID: 33168313 DOI: 10.1016/j.jhazmat.2020.124251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), an environmental pollutant, induces osteoporosis by directly destroying bone tissue, but its direct damaging effect on bone cells is not fully illustrated. Here, we treated mouse bone marrow stem cells (BMSC) and bone marrow macrophages (BMM) with Cd, and gave BALB/c mice Cd in water. Long-term Cd exposure significantly inhibited BMSC osteogenesis and osteoclast differentiation in vitro, and induced osteoporosis in vivo. Cd exposure also reduced P2X7 expression dramatically. However, P2X7 deletion significantly inhibited osteoblast and osteoclast differentiation; P2X7 overexpression obviously reduced the suppression effect of Cd on osteoblast and osteoclast differentiation. The suppression of P2X7-PI3K-AKT signaling aggravated the effect of Cd. In mice, short-term Cd exposure did not result in osteoporosis, but bone formation was inhibited, RANKL expression was increased, and osteoclasts were significantly increased in vivo. In vitro, short-term Cd exposure not only increased osteoclast numbers, but also promoted osteoclast adhesion function at late-stage osteoclast differentiation. Cd exposure also reduced P2X7 expression in vivo and in vitro. Our results demonstrate that short-term Cd exposure does not affect osteoblast and osteoclast apoptosis in vivo and in vitro, but long-term Cd exposure significantly increases bone tissue apoptosis. Overall, our results describe a novel mechanism for Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| |
Collapse
|
11
|
Wang F, Yao S, Xia H. SIRT1 is a key regulatory target for the treatment of the endoplasmic reticulum stress-related organ damage. Biomed Pharmacother 2020; 130:110601. [PMID: 32784049 DOI: 10.1016/j.biopha.2020.110601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is an evolutionarily conserved adaptive response that contributes to deal with the misfolded or unfolded protein in the lumen of the ER and restore the ER homeostasis. However, excessive and prolonged ER stress can trigger the cell-death signaling pathway which causes cell death, usually in the form of apoptosis. It is generally accepted that inappropriate cellular apoptosis and a series of the subsequent inflammatory response and oxidative stress can cause disturbance of normal physiological functions and organ damage. A lot of evidence shows that the excessive activation of the ER stress contributes to the pathogenesis of many kinds of diseases and inhibiting the inappropriate stress is of great significance for maintaining the normal physiological function. In recent years, Sirtuin1 (SIRT1) has become a research hotspot on ER stress. As a master regulator of ER stress, increasing evidence suggests that SIRT1 plays a positive role in a variety of ER stress-induced organ damage via multiple mechanisms, including inhibiting cellular apoptosis and promoting autophagy. Furthermore, a lot of factors have shown effective regulation of SIRT1, which indicates the feasibility of treating SIRT1 as a target for the treatment of ER stress-related diseases. We summarize and reveal the molecular mechanisms underlying the protective effect of SIRT1 in multiple ER stress-mediated organ damage in this review. We also summed up the possible adjustment mechanism of SIRT1, which provides a theoretical basis for the treatment of ER stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Handl J, Čapek J, Majtnerová P, Báčová J, Roušar T. The effect of repeated passaging on the susceptibility of human proximal tubular HK-2 cells to toxic compounds. Physiol Res 2020; 69:731-738. [PMID: 32672047 DOI: 10.33549/physiolres.934491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human proximal tubular HK-2 cell line is an immortalized cell line commonly used for studying proximal tubular toxicity. Even as their use is presently increasing, there unfortunately are no studies focused on functional changes in HK-2 cells associated with passaging. The aim of the present study, therefore, was to evaluate the functional stability of HK-2 cells during 13 weeks of continuous passaging after 6 and 24 h of treatment with model nephrotoxic compounds (i.e., acetaminophen, cisplatin, CdCl(2)). Short tandem repeat profile, the doubling time, cell diameter, glutathione concentration, and intracellular dehydrogenase activity were measured in HK-2 cells at each tested passage. The results showed that HK-2 cells exhibit stable morphology, cell size, and cell renewal during passaging. Mean doubling time was determined to be 54 h. On the other hand, we observed a significant effect of passaging on the susceptibility of HK-2 cells to toxic compounds. The largest difference in results was found in both cadmium and cisplatin treated cells across passages. We conclude that the outcomes of scientific studies on HK-2 cells can be affected by the number of passages even after medium-term cultivation and passaging for 13 weeks.
Collapse
Affiliation(s)
- J Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Rana SVS. Endoplasmic Reticulum Stress Induced by Toxic Elements-a Review of Recent Developments. Biol Trace Elem Res 2020; 196:10-19. [PMID: 31686395 DOI: 10.1007/s12011-019-01903-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum of all eukaryotic cells is a membrane-bound organelle. Under electron microscope it appears as parallel arrays of "rough membranes" and a maze of "smooth vesicles" respectively. It performs various functions in cell, i.e., synthesis of proteins to degradation of xenobiotics. Bioaccumulation of drugs/chemicals/xenobiotics in the cytosol can trigger ER stress. It is recognized by the accumulation of unfolded or misfolded proteins in the lumen of ER. Present review summarizes the present status of knowledge on ER stress caused by toxic elements, viz arsenic, cadmium, lead, mercury, copper, chromium, and nickel. While inorganic arsenic may induce various glucose-related proteins, i.e., GRP78, GRP94 and CHOP, XBP1, and calpains, cadmium upregulates GRP78. Antioxidants like ascorbic acid, NAC, and Se inhibit the expression of UPR. Exposure to lead also changes ER stress related genes, i.e., GRP 78, GRP 94, ATF4, and ATF6. Mercury too upregulates these genes. Nickel, a carcinogenic element upregulates the expression of Bak, cytochrome C, caspase-3, caspase-9, caspase-12, and GADD 153. Much is not known on ER stress caused by nanoparticles. The review describes inter-organelle association between mitochondria and ER. It also discusses the interdependence between oxidative stress and ER stress. A cross talk amongst different cellular components appears essential to disturb pathways leading to cell death. However, these molecular switches within the signaling network used by toxic elements need to be identified. Nevertheless, ER stress especially caused by toxic elements still remains to be an engaging issue.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
14
|
Xu D, He H, Liu D, Geng G, Li Q. A novel role of SIRT2 in regulating gap junction communications via connexin-43 in bovine cumulus-oocyte complexes. J Cell Physiol 2020; 235:7332-7343. [PMID: 32039484 DOI: 10.1002/jcp.29634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Abstract
SIRT2, the predominantly cytosolic sirtuin, plays important role in multiple biological processes, including metabolism, stress response, and aging. However, the function of SIRT2 in gap junction intercellular communications (GJICs) of cumulus-oocyte complexes (COCs) is not yet known. The purpose of the present study was to evaluate the effect and underlining mechanism of SIRT2 on GJICs in COCs. Here, we found that treatment with SIRT2 inhibitors (SirReal2 or TM) inhibited bovine oocyte nuclear maturation. Further analysis revealed that SIRT2 inactivation disturbed the GJICs of COCs during in vitro maturation. Correspondingly, both the Cx43 phosphorylation levels and MEK/MER signaling pathways were induced by SIRT2 inhibition. Importantly, SIRT2-mediated Cx43 phosphorylation was completely abolished by treatment with MEK1/2 inhibitor (Trametinib). Furthermore, treatment with SIRT2 inhibitors resulted in the high levels of MEK1/2 acetylation. Functionally, downregulating the MER/ERK pathways with inhibitors (Trametinib or SCH772984) could attenuate the closure of GJICs caused by SIRT2 inactivation in partly. In addition, inhibition of SIRT2 activity significantly decreased the membrane and zona pellucida localization of Cx43 by upregulating the levels of Cx43 acetylation. Taken together, these results demonstrated a novel role that SIRT2 regulates GJICs via modulating the phosphorylation and deacetylation of Cx43 in COCs.
Collapse
Affiliation(s)
- Dejun Xu
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huanshan He
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dingbang Liu
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxia Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qingwang Li
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Gao H, Chen J, Ding F, Chou X, Zhang X, Wan Y, Hu J, Wu Q. Activation of the N-methyl-d-aspartate receptor is involved in glyphosate-induced renal proximal tubule cell apoptosis. J Appl Toxicol 2019; 39:1096-1107. [PMID: 30907447 DOI: 10.1002/jat.3795] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2023]
Abstract
Glyphosate-based herbicides have been used worldwide for decades and have been suggested to induce nephrotoxicity, but the underlying mechanism is not yet clear. In this study, we treated a human renal proximal tubule cell line (HK-2) with glyphosate for 24 hours at concentrations of 0, 20, 40 and 60 μm. Glyphosate was found to reduce cell viability and induce apoptosis and oxidative stress in a dose-dependent manner. Because the chemical structures of glyphosate and those of its metabolite AMPA are similar to glycine and glutamate, which are agonists of the N-methyl-d-aspartate receptor (NMDAR), we investigated the potential role of the NMDAR pathway in mediating the proapoptotic effect of glyphosate on proximal tubule cells. We found that NMDAR1 expression, as well as intracellular Ca2+ ([Ca2+ ]i ) and reactive oxygen species (ROS) levels, increased after glyphosate treatment. Blocking NMDAR attenuated glyphosate-induced upregulation of [Ca2+ ]i and ROS levels as well as apoptosis. Meanwhile, inhibition of [Ca2+ ]i reduced glyphosate-induced ROS and apoptosis, and inhibition of ROS alleviated glyphosate-induced apoptosis. In mice exposed to 400 mg/kg glyphosate, the urine low molecular weight protein levels started to increase from day 7. Upregulation of apoptosis and NMDAR1 expression in renal proximal tubule epithelium and an imbalance of oxidant and antioxidative products were observed. These results strongly suggest that activation of the NMDAR1 pathway, together with its downstream [Ca2+ ]i and oxidative stress, is involved in glyphosate-induced renal proximal tubule epithelium apoptosis.
Collapse
Affiliation(s)
- Hui Gao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fan Ding
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xin Chou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qing Wu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| |
Collapse
|
16
|
Fan T, Chen Y, He Z, Wang Q, Yang X, Ren Z, Zhang S. Inhibition of ROS/NUPR1-dependent autophagy antagonises repeated cadmium exposure -induced oral squamous cell carcinoma cell migration and invasion. Toxicol Lett 2019; 314:142-152. [PMID: 31319114 DOI: 10.1016/j.toxlet.2019.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd), an established carcinogen, is a risk factor for oral squamous cell carcinoma (OSCC). Macroautophagy/autophagy is proposed to play a pivotal role in Cd-mediated carcinogenic activity. However, the mechanisms underlying Cd-induced autophagy are poorly understood. In the present study, a CAL27 OSCC cell line exposed to 10-6 M Cd for 8 weeks was used as a model system. Repeated Cd exposure induced significant migration and invasion of CAL27 cells. Furthermore, we showed that Cd increased the autophagic flux in CAL27 cells, as evidenced by the upregulation of LC3-II and the downregulation of P62/SQSTM1. The genetic blocking of autophagy inhibited Cd-induced migration and invasion, indicating a carcinogenic role of autophagy in Cd-treated CAL27 cells. Cd-induced NUPR1 expression, which contributes to lysosomal biogenesis and expression of autophagy-related gene, was found to mechanistically initiate autophagy in CAL27 cells. Of note, NUPR1 shRNA abolished Cd-induced autophagy both in vitro and in vivo. We also found that Cd triggered the generation of MDA in a xenograft tumour model and that N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, abrogated the effects of Cd on NUPR1-dependent autophagy in vivo. Taken together, these results demonstrate that ROS-dependent NUPR1-mediated autophagy plays an important role in repeated Cd exposure -induced cell growth, migration and invasion in OSCC cells.
Collapse
Affiliation(s)
- Tengfei Fan
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanrong Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhu Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Wang S, Ren X, Hu X, Zhou L, Zhang C, Zhang M. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol Appl Pharmacol 2019; 368:37-48. [DOI: 10.1016/j.taap.2019.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
|
18
|
Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through XBP-1s deacetylation in human renal tubular epithelial cells. Arch Toxicol 2019; 93:965-986. [PMID: 30796460 DOI: 10.1007/s00204-019-02415-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
Abstract
Cadmium (Cd), an occupational and environmental pollutant, induces nephrotoxicity by primarily damaging renal proximal tubular cells. In this study, we hypothesized that pyroptosis, a caspase-1-dependent inflammatory programmed cell death mechanism, mediates Cd-induced nephrotoxicity. Human proximal tubular epithelial HK-2 cells were treated with 0-10 µM CdCl2 for 48 h. We found that Cd dose-dependently caused cytotoxicity, which correlated with activation of the NLRP3 inflammasome, increases in the expression and secretion of pro-inflammatory cytokines and upregulation of pyroptosis-related genes in HK-2 cells or/and in kidneys of Cd-treated mice. These effects were significantly abrogated by inhibiting caspase-1 activity with inhibitor YVAD or silencing NLRP3 with siRNA in vitro, suggesting that Cd induces caspase-1- and NLRP3-inflammasome-dependent pyroptosis. Moreover, Cd treatment also activated three branches (ATF6, PERK and IRE-1α) of endoplasmic reticulum stress. Selective inhibition of the IRE-1α/XBP-1s branch by a pharmacological inhibitor STF-083010 or by genetic silencing of XBP-1 significantly attenuated Cd-induced NLRP3 inflammasome activation and pyroptosis. Mechanistically, Cd suppressed deacetylase Sirtuin-1 (SIRT-1) protein expression and activity leading to decrease in physical binding with XBP-1s protein, and thus the accumulation of acetylated XBP-1s levels. Activation of SIRT1 using a pharmacological agonist resveratrol or genetic SIRT1 overexpression significantly abolished Cd-induced activation of the IRE-1α/XBP-1s pathway and the NRLP3 inflammasome as well as pyroptosis, which were counteracted by co-overexpression of both SIRT1 and XBP-1s. Collectively, our findings indicate that SIRT1 activity protects against Cd-induced pyroptosis through deacetylating XBP-1s, and thus inhibiting the IRE-1α/XBP-1s pathway in HK-2 cells. These results provide a novel mechanism for Cd-induced nephrotoxicity.
Collapse
|
19
|
Yuan Y, Yang J, Chen J, Zhao S, Wang T, Zou H, Wang Y, Gu J, Liu X, Bian J, Liu Z. Alpha-lipoic acid protects against cadmium-induced neuronal injury by inhibiting the endoplasmic reticulum stress eIF2α-ATF4 pathway in rat cortical neurons in vitro and in vivo. Toxicology 2019; 414:1-13. [DOI: 10.1016/j.tox.2018.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
|
20
|
Zhao H, Ma N, Liu Z, Wang T, Yuan C, He Y, Dun Y, Zhou Z, Yuan D, Zhang C. Protective effect of Wuzi Yanzong recipe on testicular dysfunction through inhibition of germ cell apoptosis in ageing rats via endoplasmic reticulum stress. Andrologia 2018; 51:e13181. [DOI: 10.1111/and.13181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Haixia Zhao
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Na Ma
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Zhaoqi Liu
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Ting Wang
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Chengfu Yuan
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Yumin He
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Yaoyan Dun
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Zhiyong Zhou
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Ding Yuan
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
- Renhe Hospital of China Three Gorges University; Yichang China
| | - Changcheng Zhang
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| |
Collapse
|