1
|
Vikhar Danish Ahmad A, Ayaz Ali S, Yasar Q, Sakle NS, Mukhtar Khan M. Integrative network pharmacology, molecular docking, and dynamic simulation analysis of a polyherbal formulation for potential therapeutic impact on prostate cancer. Heliyon 2024; 10:e34531. [PMID: 39114070 PMCID: PMC11305312 DOI: 10.1016/j.heliyon.2024.e34531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Prostate cancer (PCa) remains a significant health concern globally, prompting a continual search for novel therapeutic strategies. In this study, we employed a comprehensive approach combining network pharmacology, molecular docking and dynamic simulation to explore the potential impact of a polyherbal formulation on PCa. Methods Utilizing comprehensive network pharmacology approaches, we elucidated the complex interactions between the bioactive compounds within the polyherbal formulation and key targets associated with PCa progression, highlighting their multitarget mechanisms through integrated protein‒protein interaction and KEGG pathway analyses. Molecular docking simulation studies were performed to predict the binding affinities and modes of interaction between the identified bioactive compounds and their respective protein targets. Results Complex connections comprising 486 nodes and 845 edges were found by the compound-target network analysis. Significant interactions were observed, and the average node degree was 4.23. KEGG research revealed that PCa and the PI3K-Akt signalling pathway are implicated in modulating prostate cancer. The Quercetin docking investigations revealed that the binding energies for AR and PIK3R1 were -9 and -9.5 kcal/mol, respectively. Based on the results of the MD simulations, it appears that tiny molecules and proteins have formed stable complexes with low fluctuations. Conclusion In conclusion, this comprehensive method emphasises the value of network pharmacology in conjunction with molecular docking and dynamic simulation in revealing the anti-PCa therapeutic potential of polyherbal formulations, opening up new possibilities for the creation of efficient anti-cancer medicines.
Collapse
Affiliation(s)
| | - Syed Ayaz Ali
- Dr. Rafiq Zakaria Campus, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, Maharashtra, India
| | - Qazi Yasar
- Dr. Rafiq Zakaria Campus, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, Maharashtra, India
| | - Nikhil S. Sakle
- Dr. Rafiq Zakaria Campus, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, Maharashtra, India
| | - Mohd Mukhtar Khan
- Dr. Rafiq Zakaria Campus, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, Maharashtra, India
| |
Collapse
|
2
|
Molonia MS, Muscarà C, Speciale A, Salamone FL, Costa G, Vento G, Saija A, Cimino F. Low concentrations of antimony impair adipogenesis and endoplasmic reticulum homeostasis during 3T3-L1 cells differentiation. Food Chem Toxicol 2023; 181:114107. [PMID: 37858840 DOI: 10.1016/j.fct.2023.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Antimony (Sb) is a metalloid widely present in plastics used for food contact packaging, toys and other household items. Since Sb can be released by these plastics and come into contact with humans, health concerns have been highlighted. The effect of Sb on human tissues is yet controversial, and biochemical mechanisms of toxicity are lacking. In the present study, the effect of very low nanomolar concentrations of Sb(III), able to mimicking chronic human exposure, was evaluated in 3T3-L1 murine cells during the differentiation process. Low nanomolar Sb exposure (from 0.05 to 5 nM) induced lipid accumulation and a marked increase in C/EBP-β and PPAR-γ levels, the master regulators of adipogenesis. The Sb-induced PPAR-γ was reverted by the estrogen receptor antagonist ICI 182,780. Additionally, Sb stimulated preadipocytes proliferation inducing G2/M phase of cell cycle and this effect was associated to reduced cell-cycle inhibitor p21 levels. In addition to these metabolic dysfunctions, Sb activated the proinflammatory NF-κB pathway and altered endoplasmic reticulum (ER) homeostasis inducing ROS increase, ER stress markers XBP-1s and pEIF2a and downstream genes, such as Grp78 and CHOP. This study, for the first time, supports obesogenic effects of low concentrations exposure of Sb during preadipocytes differentiation.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, 98100, Messina, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Gregorio Costa
- Department of Human Pathology in Adult and Developmental Age, University of Messina, 98125, Messina, Italy.
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genova, 16132, Genoa, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
3
|
Wang S, Wang J, Luo Y, Shen H, Li Y. Evaluation of heavy metal pollution with uneven spatial sampling distribution based on Voronoi area density. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50431-50443. [PMID: 36795202 DOI: 10.1007/s11356-023-25778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 04/16/2023]
Abstract
Ecological risk index and Voronoi diagram have been extensively used as a diagnostic guide for heavy metal pollution to support people in-depth analysis of the possibility of various contamination sources causing damage to social production, life, and the ecological environment. However, under the condition of uneven distribution of detection points, there are often situations where the Voronoi polygon area corresponding to a large degree of pollution is small or the area of the Voronoi polygon is great with a low level of pollution, and using the Voronoi area weighting or the Voronoi area density may ignore heavily polluted local areas. This study proposes the Voronoi density-weighted summation to accurately measure the concentration and diffusion of heavy metal pollution in the target area for the above issues. Then, we propose a contribution value method based on k-means to determine the number of divisions to ensure the prediction accuracy and computational cost at the same time. Moreover, applying local entropy deepens the understanding of local regional and overall system situations. Through four representative regions, the results show that the proposed whole scheme based on Voronoi diagram can effectively predict and evaluate the spatial distribution of heavy metal pollution, which provides a theoretical basis for comprehending and exploring the complex pollution environment.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Intelligent Science, National University of Defense Technology, Changsha, 410073, China
- School of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Jing Wang
- School of Electrical Engineering, Guizhou University, Guiyang, 550025, China
| | - You Luo
- School of Intelligent Science, National University of Defense Technology, Changsha, 410073, China
| | - Hui Shen
- School of Intelligent Science, National University of Defense Technology, Changsha, 410073, China.
| | - Yibing Li
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610097, China
| |
Collapse
|
4
|
Qie Y, Zhou D, Wu Z, Liu S, Shen C, Hu H, Zhang C, Xu Y. Low-dose hexavalent chromium(VI) exposure promotes prostate cancer cell proliferation by activating MAGEB2-AR signal pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113724. [PMID: 35660381 DOI: 10.1016/j.ecoenv.2022.113724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with several malignancies, such as lung cancer, but little information was available about the effects of its low-dose environmental exposure in prostate cancer. Our previous study has shown that low-dose Cr(VI) exposure could promote prostate cancer(PCa) cell growth in vitro and in vivo. In the present study, we furthermore found that low-dose Cr(VI) exposure could induce DNA demethylation in PCa cells. Based on our transcriptome sequencing data and DNA methylation database, we further identified MAGEB2 as a potential effector target that contributed to tumor-promoting effect of low-dose Cr(VI) exposure in PCa. In addition, we demonstrated that MAGEB2 was upregulated in PCa and its knockdown restrained PCa cell proliferation and tumor growth in vitro and in vivo. Moreover, Co-IP and point mutation experiments confirmed that MAGEB2 could bind to the NH2-terminal NTD domain of AR through the F-box in the MAGE homology domain, and then activated AR through up-regulating its downstream targets PSA and NX3.1. Together, low-dose Cr(VI) exposure can induce DNA demethylation in prostate cancer cells, and promote cell proliferation via activating MAGEB2-AR signaling pathway. Thus, inhibition of MAGEB2-AR signaling is a novel and promising strategy to reverse low-dose Cr(VI) exposure-induced prostate tumor progression, also as effective adjuvant therapy for AR signaling-dependent PCa.
Collapse
Affiliation(s)
- Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shenglai Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
5
|
Wu Y, You X, Lin Q, Xiong W, Guo Y, Huang Z, Dai X, Chen Z, Mei S, Long Y, Tian X, Zhou Q. Exploring the Pharmacological Mechanisms of Xihuang Pills Against Prostate Cancer via Integrating Network Pharmacology and Experimental Validation In Vitro and In Vivo. Front Pharmacol 2022; 12:791269. [PMID: 35342388 PMCID: PMC8948438 DOI: 10.3389/fphar.2021.791269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Drug resistance is the major cause of increasing mortality in prostate cancer (PCa). Therefore, it an urgent to develop more effective therapeutic agents for PCa treatment. Xihuang pills (XHP) have been recorded as the efficient anti-tumor formula in ancient Chinese medical literature, which has been utilized in several types of cancers nowadays. However, the effect protective role of XHP on the PCa and its underlying mechanisms are still unclear. Methods: The active ingredients of XHP were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and BATMAN-TCM. The potential targets of PCa were acquired from the Gene Cards and OMIM databases. R language and Perl language program were utilized to clarify the interaction between the PCa-related targets and the potential targets of XHP. The potential targets of XHP for prostate cancer were gathered from the Gene ontology and KEGG pathway. Furthermore, cell proliferation assays were verified by PC3 and LNCaP cells. The efficacy and potential mechanism tests were confirmed by the PCa PC3 cells and mice subcutaneous transplantation. The effects of PI3K/Akt/mTOR-related proteins on proliferation, apoptosis, and cell cycle of PCa cells were measured by the Cell Counting Kit-8(CCK8), TUNEL assay, real-time quantitative reverse transcription PCR (QRT-PCR), and Western Blotting, respectively. Results: The active components of four traditional Chinese medicines in XHP were searched on the TCMSP and Batman TCM database. The biological active components of XHP were obtained as OB ≥30% and DL ≥0.18. The analysis of gene ontology and KEGG pathway identified the PI3K/Akt/mTOR signaling pathway as the XHP-associated pathway. Collectively, the results of in vitro and in vivo experiments showed that XHP had the effect of inhibiting on the proliferation of PC3 and LNCaP cells. XHP promoted the apoptosis and restrained the cell cycle and invasion of the PC3 cells and subcutaneous transplantation. Meanwhile, the suppression of XHP on the level of expression of PI3K, Akt, and mTOR-pathway-related pathway proteins has been identified in a dose-dependent manner. Conclusion: PI3K/Akt/mTOR pathway-related pathway proteins were confirmed as the potential XHP-associated targets for PCa. XHP can suppress the proliferation of prostate cancer via inhibitions of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China.,Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Qunfang Lin
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Xiong
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yinmei Guo
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinjun Dai
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengjia Chen
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Long
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory of Chinese Medicine Oncology, Changsha, China
| | - Qing Zhou
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) pollution has increased health risks to humans as a result of extensive application in diverse fields. Exposure to different levels of Sb and its compounds will directly or indirectly affect the normal function of the human body, whereas limited human health data and simulation studies delay the understanding of this element. In this review, we summarize current research on the effects of Sb on human health from different perspectives. First, the exposure pathways, concentration and excretion of Sb in humans are briefly introduced, and several studies have revealed that human exposure to high levels of Sb will cause higher concentrations in body tissues. Second, interactions between Sb and biomolecules or other nonbiomolecules affected biochemical processes such as gene expression and hormone secretion, which are vital for causing and understanding health effects and mechanisms. Finally, we discuss the different health effects of Sb at the biological level from small molecules to individual. In conclusion, exposure to high levels of Sb compounds will increase the risk of disease by affecting different cell signaling pathways. In addition, the appropriate form and dose of Sb contribute to inhibit the development of specific diseases. Key challenges and gaps in toxicity or benefit effects and mechanisms that still hinder risk assessment of human health are also identified in this review. Systematic studies on the relationships between the biochemical process of Sb and human health are needed.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
7
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
8
|
Adebola TM, Fennell HWW, Druitt MD, Bonin CA, Jenifer VA, van Wijnen AJ, Lewallen EA. Population-Level Patterns of Prostate Cancer Occurrence: Disparities in Virginia. CURRENT MOLECULAR BIOLOGY REPORTS 2022; 8:1-8. [PMID: 35909818 PMCID: PMC9337710 DOI: 10.1007/s40610-022-00147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostate cancer is the most common cancer and the second leading cause of cancer-related deaths among men in the United States. In Virginia, which is a representative, ethnically diverse state of more than 8 million people that was established nearly 400 years ago, prostate cancer has the highest rate of new detection for any type of cancer. All men are at risk of developing prostate cancer regardless of demographics, but some men have an increased mortality risk due to cancer metastasis. Notably, one in five African American men will be diagnosed with prostate cancer in their lifetime and they have the highest prostate cancer mortality rate of any ethnic group in the United States, including Virginia. A person's genetic profile and family history are important biological determinants of prostate cancer risk, but modifiable environmental factors (e.g., pollution) appear to be correlated with patterns of disease prevalence and risk. In this review, we examine current perspectives on population-level spatial patterns of prostate cancer in Virginia. For context, recent, publicly available data from the Centers for Disease Control and Prevention are highlighted and presented in spatial format. In addition, we explore possible co-morbidities of prostate cancer that may have demographic underpinnings highlighted in recent health disparity studies.
Collapse
Affiliation(s)
- Tunde M Adebola
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Michael D Druitt
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Carolina A Bonin
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | | | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| |
Collapse
|
9
|
Lou Y, Ma C, Liu Z, Shi J, Zheng G, Zhang C, Zhang Z. Antimony exposure promotes bladder tumor cell growth by inhibiting PINK1-Parkin-mediated mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112420. [PMID: 34166935 DOI: 10.1016/j.ecoenv.2021.112420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Antimony is one of the heavier pnictogens and is widely found in human food chains, water sources, and as an air pollutant. Recent years have seen steadily increasing concentrations of antimony in the ecological environment; critically, several studies have indicated that antimony might pose a tumorigenic risk factor in several cancers. Therefore, antimony toxicity has attracted increasing research attention, with the molecular mechanisms underlying suspected antimony-mediated tumor transformation of greatest interest. Our results showed that the serum concentration of antimony was higher in bladder tumor patients relative to levels in non-tumor patients. Moreover, that such high antimony serum concentration were closely associated with poorer outcome in bladder tumor patients. Additionally, we demonstrated that the presence of antimony promoted both in vitro and in vivo bladder tumor cell growth. Our results also indicated that low-dose antimony resulted in significantly decreased mitochondrial membrane potential, mitochondrial respiratory enzyme complex I/II/III/IV activity, ATP/ADP ratio, and ATP concentration relative to the control group. These findings suggested that antimony caused mitochondrial damage. Finally, we found that low-dose antimony(0.8uM) inhibited mitophagy by deregulating expression of PINK1, Parkin, and p(ser65)-Parkin, and activation of PINK1-Parkin pathway by CCCP could inhibit antimony-induced tumor cell growth. Collectively, this inhibited the proliferation of bladder tumor cells. Overall, our study suggested that antimony promoted bladder tumor cell growth by inhibiting PINK1-Parkin-mediated mitophagy. These findings highlight the therapeutic potential in targeting molecules within this antimony induced-PINK1/Parkin signaling pathway and may offer a new approach for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Yantao Lou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Chunlei Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Zhifei Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Jianxi Shi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Guangzhe Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
10
|
Guo S, Zhang Y, Wang S, Yang T, Ma B, Li X, Zhang Y, Jiang X. LncRNA PCA3 promotes antimony-induced lipid metabolic disorder in prostate cancer by targeting MIR-132-3 P/SREBP1 signaling. Toxicol Lett 2021; 348:50-58. [PMID: 34052307 DOI: 10.1016/j.toxlet.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Antimony is a common environmental contaminant that causes biological toxicity in exposed populations worldwide. Previous studies have revealed that antimony promotes prostate cancer growth by stabilizing the c-Myc protein and mimicking androgen activity. However, the role of lncRNAs in the regulation of antimony-induced carcinogenesis remains unknown, and the precise mechanisms need to be explored. In the present study, we found that chronic exposure to antimony promoted cell growth and lipid metabolic disequilibrium in prostate cancer. Mechanistically, we identified a long noncoding RNA molecule, PCA3, that was substantially upregulated in LNCaP cells in response to long-term antimony exposure. Functional studies indicated that abnormal PCA3 expression modulated antimony-induced proliferation and cellular triglyceride and cholesterol levels. In addition, PCA3 levels were found to be inversely correlated with MIR-132-3 P levels by acting as a decoy for MIR-132-3P. Besides, SREBP1 directly interacted with MIR-132-3 P to increase cell growth and disrupt lipid metabolism by targeting its 3'UTR regions. Taken together, our results revealed that lncRNA PCA3 promotes antimony-induced lipid metabolic disorder in prostate cancer by targeting MIR-132-3 P/SREBP1 signaling.
Collapse
Affiliation(s)
- Shanqi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyi Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuo Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Tong Yang
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Baojie Ma
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; The School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Boreiko CJ, Rossman TG. Antimony and its compounds: Health impacts related to pulmonary toxicity, cancer, and genotoxicity. Toxicol Appl Pharmacol 2020; 403:115156. [PMID: 32710957 DOI: 10.1016/j.taap.2020.115156] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Although occupational exposure to antimony and its compounds can produce pulmonary toxicity, human carcinogenic impacts have not been observed. Inhalation studies with respirable antimony trioxide particles administered to rats and mice have, however, induced carcinogenic responses in the lungs and related tissue sites. Genotoxicity studies conducted to elucidate mechanism(s) for tumor induction have produced mixed results. Antimony compounds do not induce gene mutations in bacteria or cultured mammalian cells, but chromosome aberrations and micronuclei have been observed, usually at highly cytotoxic concentrations. Indirect mechanisms of genotoxicity have been proposed to mediate these responses. In vivo genotoxicity tests have generally yielded negative results although several positive studies of marginal quality have been reported. Genotoxic effects may be related to indirect modes of action such as the generation of excessive reactive oxygen species (ROS), altered gene expression or interference with DNA repair processes. Such indirect mechanisms may exhibit dose-response thresholds. For example, interaction of ROS with in vivo antioxidant systems could yield a threshold for genotoxicity (and cancer) only at concentrations above the capacity of antioxidant defense mechanisms to control and/or eliminate damage from ROS.
Collapse
Affiliation(s)
| | - Toby G Rossman
- Environmental Medicine, NYU Grossman School of Medicine, New York, USA
| |
Collapse
|
12
|
Saerens A, Ghosh M, Verdonck J, Godderis L. Risk of Cancer for Workers Exposed to Antimony Compounds: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224474. [PMID: 31739404 PMCID: PMC6888331 DOI: 10.3390/ijerph16224474] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Antimony (Sb) trioxide and antimony trisulfide are "2B: Possibly carcinogenic to humans" and "3: Unclassifiable" according to the International Agency for Research on Cancer (IARC). The U.S. National Toxicology Program (NTP) concluded that antimony trioxide "is reasonably anticipated to be a human carcinogen based on studies in rats and mice". We investigated the cancer hazard of antimony compounds for workers, a population with high exposure to antimony substances. METHODS Using the "Guidelines for performing systematic reviews in the development of toxicity factors" (Texas Commission on Environmental Quality (TCEQ) 2017) as a guidance, we established a human and an animal toxicology data stream in Medline and ToxLine. Data from this review were applied in a human health risk assessment. RESULTS A final pool of 10 occupational and 13 animal toxicology articles resulted after application of TCEQ guidelines. CONCLUSIONS Antimony carcinogenicity evidence involving workers is inadequate, based on confounding, small sample sizes, incomparability across studies, and inadequate reference populations. An increased lung cancer risk cannot be excluded. Evidence for lung neoplasms caused by antimony trioxide inhalation in experimental animals is sufficient. Overall, carcinogenicity in workers is probable (International Agency for Research on Cancer (IARC) 2A). It remains unclear from what occupational exposure duration and dose this effect arises and whether exposure threshold values should be reconsidered.
Collapse
Affiliation(s)
- Anton Saerens
- Department of Public Health and Primary Care, Centre Environment & Health, 3000 Leuven, Belgium; (A.S.); (M.G.); (J.V.)
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre Environment & Health, 3000 Leuven, Belgium; (A.S.); (M.G.); (J.V.)
| | - Jelle Verdonck
- Department of Public Health and Primary Care, Centre Environment & Health, 3000 Leuven, Belgium; (A.S.); (M.G.); (J.V.)
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre Environment & Health, 3000 Leuven, Belgium; (A.S.); (M.G.); (J.V.)
- External Service for Prevention and Protection at Work, Idewe, 3001 Heverlee, Belgium
- Correspondence:
| |
Collapse
|
13
|
Zhang X, Sun Y, Wang P, Yang C, Li S. Reduced pim-1 expression increases chemotherapeutic drug sensitivity in human androgen-independent prostate cancer cells by inducing apoptosis. Exp Ther Med 2019; 18:2731-2738. [PMID: 31572520 PMCID: PMC6755443 DOI: 10.3892/etm.2019.7862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapeutic drug resistance is an obstacle for the successful therapy of prostate cancer. The aim of the present study was to identify the effects of proto-oncogene serine/threonine-protein kinase pim-1 (pim-1) in the proliferation of chemotherapeutic drug-resistant prostate cancer cells. Androgen-independent human prostate cancer cell lines PC3 and DU145 were used in the current study. Cisplatin-sensitive PC3 cells and cisplatin-resistant PC3/DDP cells were used in drug-resistance assays. The expression levels of pim-1, permeability glycoprotein (p-gp), caspase-3 and cleaved caspase-3 were determined using western blotting analysis; pim-1 was knocked down using pim-1-specific short hairpin RNA (shRNA); cell viability was determined using MTT assay and IC50 values of the chemotherapeutic drugs in human prostate cancer cells tested were calculated using GraphPad 5 software. Androgen-independent human prostate cancer cell lines PC3 and DU145 were transfected with pim-1-targeted or control shRNA, and MTT results revealed that pim-1 knockdown significantly inhibited PC3 and DU145 cell viability in a time-dependent manner (P<0.01). Cisplatin-resistant cells PC3/DDP exhibited higher levels of pim-1 and p-gp expression compared with cisplatin-sensitive PC3 cells; and pim-1 knockdown markedly increased chemotherapeutic drug sensitivity in PC3/DDP cells. In addition, pim-1 knockdown increased chemotherapeutic drug sensitivity in PC3/DDP cells. The molecular mechanism of drug sensitivity was discovered to be partly due to pim-1 knockdown, as it significantly increased apoptosis in cisplatin-resistant PC3/DDP cells. The present study may provide a new strategy for the therapy of prostate cancer.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu 225002, P.R. China
| | - Yuyan Sun
- Department of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu 225002, P.R. China
| | - Peng Wang
- Department of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu 225002, P.R. China
| | - Changfu Yang
- Department of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu 225002, P.R. China
| | - Shengwei Li
- Department of Surgery of Chinese Medicine, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu 225002, P.R. China
| |
Collapse
|
14
|
Kejlová K, Dvořáková M, Vavrouš A, Ševčík V, Kanďárová H, Letašiová S, Sosnovcová J, Jírová D. Toxicity of food contact paper evaluated by combined biological and chemical methods. Toxicol In Vitro 2019; 59:26-34. [PMID: 30951805 DOI: 10.1016/j.tiv.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
|
15
|
Li B, Espósito BP, Wang S, Zhang J, Xu M, Zhang S, Zhang Z, Liu S. Desferrioxamine-caffeine shows improved efficacy in chelating iron and depleting cancer stem cells. J Trace Elem Med Biol 2019; 52:232-238. [PMID: 30732888 DOI: 10.1016/j.jtemb.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Iron chelation has already been proposed to be a feasible strategy for cancer therapeutics in that reinforced iron demand is demonstrated in cancer cells, and quite a few iron chelators have been developed for this purpose. Desferrioxamine (DFO), an iron chelator approved by the U.S. Food and Drug Administration (FDA), has been extensively examined to remove extra iron. However, DFO has been found to harbor limited efficacies in combating cancer cells due to poor cellular permeability. In the current study, we synthesized the DFO derivative, named as desferrioxamine-caffeine dimer (DFCAF) by linking DFO to caffeine with high purity and excellent stability. Our data showed that DFCAF displayed greater cellular permeability to chelate intracellular iron in 4T1 breast cancer cells than DFO, posing more inhibition on cell growth and cellular motility/invasion. Importantly, DFCAF was uncovered to remarkably deplete cancer stem cells (CSCs), as characterized by the remarkable decrease of the CD44+/high/CD24-/low and ALDH+/high subpopulation. In parallel, DFCAF was also found to greatly reverse epithelial-mesenchymal transition (EMT), suggesting the potential application to restrain tumor progression and metastasis. Collectively, these data unveiled the improved efficacy to target cancer cells and to deplete CSCs, thus opening a new path for better cancer therapeutics through iron chelation.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuping Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin 300211, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Wen Y, An Z, Qiao B, Zhang C, Zhang Z. RPS7 promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer. Urol Oncol 2019; 37:297.e1-297.e7. [PMID: 30737160 DOI: 10.1016/j.urolonc.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Small ribosomal protein subunit 7 (RPS7) is an important structural components of the ribosome involved in protein synthesis, previous studies demonstrated that RPS7 was associated with several malignancies, but the role of RPS7 in prostate cancer (PCa) remains unclear. To decipher such a puzzle, in the current study, we deciphered the role and mechanism of RPS7 during the progression of PCa. MATERIAL AND METHODS In this study, the expression of mRNA was performed by quantitative real-time PCR. The protein level was identified by Western blotting. Kaplan-Meier survival analysis was demonstrated the relation between the abnormal expression of RPS7 mRNA and the overall survival. Cell proliferation was assessed by MTT assay and cell counting, meanwhile, cell migration was checked by transwell assay. RESULTS RPS7 is higher expressed in PCa (p < 0.001), and the overexpression of RPS7 is closely associated with poor outcome of PCa patients after radical prostatectomy (p < 0.001). Inhibition the expression of RPS7 with a specific RPS7 siRNA could markedly attenuate prostate tumor growth and migration (p < 0.05). Mechanistic data reveals that inhibition of RPS7 could up-regulate the epithelial protein marker, E-cadherin (p < 0.05), and down-regulate the mesenchymal protein markers, such as N-cadherin and Snail (p < 0.001). CONCLUSIONS RPS7 is a newly verified tumor promoter in PCa, and promotes cell migration by targeting epithelial-to-mesenchymal transitionpathway. Thus, inhibition of RPS7-epithelial to-mesenchymal transition signaling might represent a prospective approach toward limiting prostate tumor progression.
Collapse
Affiliation(s)
- Yingwu Wen
- Department of Urology, Kailuan General Hospital, Tangshan, China
| | - Zesheng An
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China.
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China.
| |
Collapse
|
17
|
Zhang C, Lu C, Wang Z, Feng G, Du E, Liu Y, Wang L, Qiao B, Xu Y, Zhang Z. Antimony enhances c-Myc stability in prostate cancer via activating CtBP2-ROCK1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:61-68. [PMID: 30098506 DOI: 10.1016/j.ecoenv.2018.07.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 05/17/2023]
Abstract
Antimony, one of the heavier pnictogens, is widely used in industry, and its toxicity has become a major concern. Although previous studies suggested that antimony might be a tumorigenic risk factor in several cancers, the molecular basis underlying antimony-mediated transformation remains unclear. Our results showed that the serum concentration of antimony was higher in prostate cancer specimens relative to that of benign prostate tissues, and this high serum concentration of antimony was closely associated with poorer outcome in prostate cancer patients. Additionally, we demonstrated that antimony could promote prostate cancer cell growth in vitro and in vivo. In order to gain insight into the potential mechanisms, we examined the effects of antimony exposure on downstream signaling that could contribute to tumor development. We found that low-dose antimony could regulate the expression of Ctbp2 by binding and regulating the activity of its MRE domain. Meanwhile, CtBP2 could transcriptionally regulate the expression of RhoC, which is a member of the RhoGTPase family. Subsequently, the kinase activity of ROCK1 is increased, which promotes the stability of oncogene c-Myc. Overall, our study demonstrated that antimony could enhance c-Myc protein stability and promote prostate cancer cell proliferation through activating CtBP2-ROCK1 signaling pathway. These findings also substantially highlighted the potential of targeting molecules within antimony induced CtBP2-c-Myc signaling pathway as a promising therapeutic approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Chao Lu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Zhen Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Guowei Feng
- Department of Urology, Tianjin Tumor Hospital, Tianjin 300211, China.
| | - E Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yan Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Li Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Baomin Qiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
18
|
Zhang C, Cai K, Feng Q, Xu Y, Zhang Z. Chromium(VI) promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer. Toxicol Lett 2018; 300:10-17. [PMID: 30315950 DOI: 10.1016/j.toxlet.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
Chromium (Cr) is widely used in industry, making its toxicity a matter of concern. Although hexavalent Cr [Cr(VI)] can promote cancer cell proliferation in several cancers, there is little evidence implicating Cr(VI) in cancer cell migration, especially in prostate cancer. We show that the Cr concentration is higher in the serum of prostate cancer patients, and is closely associated with unfavorable outcomes for the patients. Additionally, low dose trivalent Cr [Cr(III)] exposure has no obvious carcinogenic effects in prostate cancer. However, Cr(VI) can promote proliferation and invasion of prostate cancer cell line PC3 cells in vitro and in vivo. In seeking the molecular mechanism of Cr(VI) exposure on cancer progression, we found that Cr(VI) could down-regulate the epithelial protein marker, E-cadherin, and up-regulate mesenchymal protein markers, such as N-cadherin and Snail. Together, these data indicate that Cr(VI) is a newly verified carcinogen in prostate cancer, and can promote cell migration by affecting the Epithelial-Mesenchymal Transition (EMT) pathway. Thus, inhibition of Cr(VI)-EMT signaling is a prospective approach toward limiting prostate tumor progression.
Collapse
Affiliation(s)
- Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, China
| | - Keke Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, China
| | - Qijin Feng
- Department of Orthopaedics, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, China.
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, China.
| |
Collapse
|