1
|
Ottappilakkil H, Perumal E. Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39865316 DOI: 10.1002/tox.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/10/2024] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity. F accumulation alters bone formation and resorption mechanisms interfering with mineral homeostasis and eventually manifests as skeletal fluorosis. Albeit the numerous studies on skeletal fluorosis, the effect of F on developmental osteogenesis is inconclusive. In light of this, we studied the effect of F on osteogenic differentiation, bone development, and mineralization in zebrafish. Zebrafish embryos were subjected to a low (25 ppm NaF), and a moderately high (50 ppm NaF) dose, along with a control (E3 medium alone) until 7 days postfertilization (dpf). The F content in the larvae was quantified to reveal a dose-dependent increase in the exposed groups. Alizarin Red and alkaline phosphatase (ALP) staining suggested enhanced mineralization in the F-treated groups. Quantitative analyses of the ALP activity and hydroxyproline (Hyp) content revealed similar results. Alcian blue staining of pharyngeal cartilages showed that F exposure alters the morphology of the major cartilages, indicating a possible craniofacial defect. Moreover, gene expression analyses of the bone markers associated with osteogenic differentiation, early mineralization, and remodeling (runx2a/b, bmp4, ocn, osx, col1a1, alp, rank, rankl, and opg) showed enhanced expression in the low F group. While the 50 ppm F group showed a decline in osteogenic activity, a considerable increase in the expression of mineralization markers was observed. The expression levels of cartilage markers sox9a and sox9b, remained insignificant, indicating the effect of F toxicity on osteogenesis and mineralization. Also, F exposure interferes with bone metabolism through altered osteogenic differentiation, development, and mineralization in zebrafish larvae.
Collapse
Affiliation(s)
- Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Wang CL, Li P, Liu B, Ma YQ, Feng JX, Xu YN, Liu L, Li ZH. Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals. ENVIRONMENTAL RESEARCH 2024; 255:119173. [PMID: 38763280 DOI: 10.1016/j.envres.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Collapse
Affiliation(s)
- Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ya-Nan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Dey Bhowmik A, Das T, Chattopadhyay A. Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast's collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis. ENVIRONMENTAL RESEARCH 2023; 236:116845. [PMID: 37558119 DOI: 10.1016/j.envres.2023.116845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Globally, 200 million people are suffering from toxic manifestations of Fluoride(F), dental and skeletal fluorosis; unfortunately, there is no treatment. To unravel the pathogenesis of skeletal fluorosis, we established fluorosis mice by treating environmentally relevant concentration of F (15 ppm NaF) through drinking water for 4 months. As in skeletal fluorosis, locomotor disability, crippling deformities occur and thus, our hypothesis was F might adversely affects collagen which gives the bone tensile strength. This work inevitably had to be carried out on osteoblast cells, responsible for synthesis, deposition, and mineralization of bone matrix. Isolated osteoblast cells were confirmed by ALP activity and mineralized nodules formation. Expression of collagen Col1a1, Col1a2, COL1A1 was significantly reduced in treated mice. Further, a study revealed the involvement of epigenetic regulation by promoter hypermethylation of Col1a1; expressional alterations of transcription factors, calcium channels and other genes e.g., Cbfa-1, Tgf-β1, Bmp1, Sp1, Sp7, Nf-Kb p65, Bmp-2, Bglap, Gprc6a and Cav1.2 are associated with impairment of collagen synthesis, deposition and decreased mineralization thus, enfeebling bone health. This study indicates the possible association of epigenetic regulation in skeletal fluorosis. However, no association was found between polymorphisms in the Col1a1 (RsaI, HindIII) and Col1a2 (RsaI, HindIII) genes with fluorosis in mice.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
4
|
Liu Y, Zhou Y, Li H, Gao J, Yang M, Yuan Z, Li X. Near-Infrared Turn-On Fluorescent Probe for Aqueous Fluoride Ion Detection and Cell Imaging. ACS OMEGA 2022; 7:34317-34325. [PMID: 36188237 PMCID: PMC9520557 DOI: 10.1021/acsomega.2c03875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Fluoride ions are one of the most essential anions in the human body and have been implicated in various pathological and physiological processes. The detection of fluoride ions in aqueous solution, as well as the imaging of fluoride ions in living cells, remains a challenge. We herein report a BODIPY-based fluorescent probe employing a pinacol borate group as the recognition moiety for the detection of fluoride ions in aqueous solutions. This probe shows high selectivity and sensitivity to fluoride ions with a significant near-infrared fluorescence turn-on response. In addition, this probe was successfully employed in fluorescence bioimaging of fluoride ions in the human cervical cancer cell and mouse mammary cancer cell, demonstrating its good cell permeability and stability under physiological conditions.
Collapse
Affiliation(s)
- Yan Liu
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Yaping Zhou
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Hongyu Li
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jie Gao
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Mingyan Yang
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Zeli Yuan
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Xinmin Li
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| |
Collapse
|
5
|
Chen L, Gu T, Wu T, Ding L, Ge Q, Zhang Y, Ma S. Proteotranscriptomic Integration analyses reveals new mechanistic insights regarding Bombyx mori fluorosis. Food Chem Toxicol 2022; 169:113414. [PMID: 36174832 DOI: 10.1016/j.fct.2022.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
The commercial value of silkworms has been widely explored and the effects of fluoride exposure on silkworms' breeding and silk production cannot be ignored. Bombyx mori is a commonly used model to explore the mechanisms of fluorosis. In the present study, we analyzed the differences in physiological and biochemical indicators after exposing larva to NaF, then evaluated differential genes and proteins. Compared to control, larvae exposed to 600 mg L-1 NaF presented decreased bodyweight, damaged midgut tissue, and were accompanied by oxidative stress. The RNA-seq showed 1493 differentially expressed genes (574 upregulated and 919 downregulated). Meanwhile, the TMT detected 189 differentially expressed proteins (133 upregulated and 56 downregulated). The integrative analysis led to 4 upregulated and 9 downregulated genes and proteins. Finally, we hypothesized that fluoride exposure might affect the intestinal digestion of silkworms, inhibit the gene expression of detoxification enzymes and stimulate cellular immune responses. Our current findings provided new insights into insect fluorosis.
Collapse
Affiliation(s)
- Liang Chen
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China.
| | - Tongyu Gu
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Tong Wu
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Lei Ding
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| |
Collapse
|
6
|
Di Paola D, Capparucci F, Lanteri G, Crupi R, Marino Y, Franco GA, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Environmental Toxicity Assessment of Sodium Fluoride and Platinum-Derived Drugs Co-Exposure on Aquatic Organisms. TOXICS 2022; 10:toxics10050272. [PMID: 35622686 PMCID: PMC9145728 DOI: 10.3390/toxics10050272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022]
Abstract
Pharmaceuticals are widely acknowledged to be a threat to aquatic life. Over the last two decades, the steady use of biologically active chemicals for human health has been mirrored by a rise in the leaking of these chemicals into natural environments. The aim of this work was to detect the toxicity of sodium fluoride (NaF) exposure and platinum-derived drugs in an ecological setting on aquatic organism development. From 24 to 96 h post-fertilization, zebrafish embryos were treated to dosages of NaF 10 mg/L−1 + cisplatin (CDDP) 100 μM, one with NaF 10 mg/L−1 + carboplatin (CARP) 25 μM, one with NaF 10 mg/L−1 + CDDP 100 μM + CARP 25 μM. Fluoride exposure in combination with Cisplatin and Carboplatin (non-toxic concentration) had an effect on survival and hatching rate according to this study. Additionally, it significantly disturbed the antioxidant defense system and increased ROS in zebrafish larvae. NaF 10 mg/L−1 associated with CDDP 100 μM and CARP 25 μM, increased the production of apoptosis-related proteins (caspase 3, bax, and bcl-2) and the downregulation of acetylcholinesterase (AChE) activity, while no effect was seen for the single exposure.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| |
Collapse
|
7
|
Wei M, Ye Y, Ali MM, Chamba Y, Tang J, Shang P. Effect of Fluoride on Cytotoxicity Involved in Mitochondrial Dysfunction: A Review of Mechanism. Front Vet Sci 2022; 9:850771. [PMID: 35518640 PMCID: PMC9062983 DOI: 10.3389/fvets.2022.850771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Fluoride is commonly found in the soil and water environment and may act as chronic poison. A large amount of fluoride deposition causes serious harm to the ecological environment and human health. Mitochondrial dysfunction is a shared feature of fluorosis, and numerous studies reported this phenomenon in different model systems. More and more evidence shows that the functions of mitochondria play an extremely influential role in the organs and tissues after fluorosis. Fluoride invades into cells and mainly damages mitochondria, resulting in decreased activity of mitochondrial related enzymes, weakening of protein expression, damage of respiratory chain, excessive fission, disturbance of fusion, disorder of calcium regulation, resulting in the decrease of intracellular ATP and the accumulation of Reactive oxygen species. At the same time, the decrease of mitochondrial membrane potential leads to the release of Cyt c, causing a series of caspase cascade reactions and resulting in apoptosis. This article mainly reviews the mechanism of cytotoxicity related to mitochondrial dysfunction after fluorosis. A series of mitochondrial dysfunction caused by fluorosis, such as mitochondrial dynamics, mitochondrial Reactive oxygen species, mitochondrial fission, mitochondrial respiratory chain, mitochondrial autophagy apoptosis, mitochondrial fusion disturbance, mitochondrial calcium regulation are emphasized, and the mechanism of the effect of fluoride on cytotoxicity related to mitochondrial dysfunction are further explored.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jia Tang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| |
Collapse
|
8
|
Li R, Gong Z, Yu Y, Niu R, Bian S, Sun Z. Alleviative Effects of Exercise on Bone Remodeling in Fluorosis Mice. Biol Trace Elem Res 2022; 200:1248-1261. [PMID: 33939130 DOI: 10.1007/s12011-021-02741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
Fluorine is widely present in nature in the form of fluoride. Prolonged high-dose fluoride exposure can cause skeletal fluorosis, resulting in osteosclerosis, osteoporosis or osteomalacia. It has been proved that exercise is one of the important factors affecting the health of the bone and promoting bone formation. To investigate the effects of exercise on bone remodeling in fluorosis mice, 120 male 3-week-old ICR mice were randomly divided into four groups: control group (C), exercise group (E), fluoride group (F), fluoride plus exercise group (F + E). After 8-week physical exercise and/or fluoride exposure, we evaluated the content of fluorine, the histopathological structure and microstructure of femur, bone metabolism biochemical indexes and oxidative stress related parameters, and the mRNA and protein levels of genes in BMP-2/Smads and OPG/RANKL/RANK signaling pathways. Our results showed that 100 mg/L NaF exposure increased the accumulation of fluoride in bone, altered histology of bone, and enhanced the activities of ALP and TRACP. Meanwhile, excessive fluoride induced oxidative stress in bone tissue by increasing the content of ROS and MDA, and decreasing the activities of antioxidant enzymes. In addition, the results of qRT-PCR suggested that NaF significantly increased the mRNA expression of BMP-2, Smad-5, Col IA1, Col IA2, OPG, RANKL and RANK, as well as the elevated proteins of OPG, RANKL and RANK. However, these fluoride-induced changes were alleviated after moderate exercise. Taken together, these findings indicated that moderate exercise decreased the toxicity of fluoride by reducing the accumulation of fluorine in the body to relieve the bone damage caused by fluorosis.
Collapse
Affiliation(s)
- Rui Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, Shanxi, China
| | - Zeen Gong
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, Shanxi, China
| | - Yanghuan Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, Shanxi, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, Shanxi, China
| | - Shengtai Bian
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, Shanxi, China.
| |
Collapse
|
9
|
Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q, Wang G, Wei S, Zhang S, Zhang J, Khan NU, Shen X, Luo P. Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 2021; 12:749035. [PMID: 34899304 PMCID: PMC8660860 DOI: 10.3389/fphar.2021.749035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shuling Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangchun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Lombarte M, Fina BL, Brun LR, Roma SM, Rigalli A, V E DL. Effect of fluoride on bone and growth plate cartilage. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:388-399. [PMID: 35895945 DOI: 10.1080/26896583.2021.1963606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of fluoride (F) for therapeutic purposes is controversial and its toxicity is a health problem. The aim of this study was to evaluate the effect of F on endochondral ossification in growing rats. Twenty-four rats of 21 days were divided into 4 groups which received 0, 20, 40 or 80 μmol F/100 g body weight/day for 30 days, through an orogastric tube. Histological evaluation of growth plate cartilage (GPC) and primary and secondary bone were analyzed on sections of the metaphysis of tibias. Total thickness of the GPC (GPC.Th), thickness of resting zone (RZ.Th), proliferative zone (PZ.Th) and hypertrophic zone (HZ.Th); bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and apoptosis by the TUNEL were measured. A hyperplasia of the proliferative zone and a significant increase in PZ.Th with 40 and 80 μmol F without changes in GPC.Th were found. In the secondary trabecular bone, presence of immature trabeculae, peritrabecular inflammatory foci and sinusoidal dilatation were observed. A significant decrease in BV/TV was also found due to a decrease in Tb.Th and a progressive increase was observed in the number of apoptotic nuclei as the dose of F increased. In conclusion, results suggest that prolonged administration (30 days) of F negatively affect the endochondral ossification with increased chondrocyte proliferation and delayed maturity of new bone, causing inflammatory damage, edema, and increased apoptotic bone cells.
Collapse
Affiliation(s)
- Mercedes Lombarte
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
- National Council of Scientific and Technical Research (CONICET), Argentina, Rosario, Santa Fe, Argentina
| | - Brenda L Fina
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
- National Council of Scientific and Technical Research (CONICET), Argentina, Rosario, Santa Fe, Argentina
| | - Lucas R Brun
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
- National Council of Scientific and Technical Research (CONICET), Argentina, Rosario, Santa Fe, Argentina
| | - Stella Maris Roma
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
| | - Alfredo Rigalli
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
- National Council of Scientific and Technical Research (CONICET), Argentina, Rosario, Santa Fe, Argentina
| | - Di Loreto V E
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
| |
Collapse
|
11
|
Dey Bhowmik A, Shaw P, Mondal P, Chakraborty A, Sudarshan M, Chattopadhyay A. Calcium and Vitamin D Supplementation Effectively Alleviates Dental and Skeletal Fluorosis and Retain Elemental Homeostasis in Mice. Biol Trace Elem Res 2021; 199:3035-3044. [PMID: 33057951 DOI: 10.1007/s12011-020-02435-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/11/2020] [Indexed: 01/22/2023]
Abstract
Fluoride (F) is an essential trace element, but chronic exposure beyond the permissible limit (1.5 ppm) effectuates dental and skeletal fluorosis. Although 200 million people across the world are suffering from toxic manifestations of F, till now proper treatment is not available. In this study, we assessed the effectiveness of calcium and vitamin D supplementation for alleviation of fluorosis. Swiss albino mice were divided into 6 groups; group I-control group (received drinking water ˂ 0.5 ppm F; within the permissible limit), group II-treated with 15 ppm of sodium fluoride (NaF) for 4 months, group III-treated with 15 ppm of NaF for 8 months through drinking water. Group IV-orally treated with 15 ppm NaF for 4 months, thereafter received only drinking water for next 4 months, group V-orally treated with 15 ppm NaF for 4 months, thereafter received drinking water supplemented with calcium and vitamin D (2.5-g calcium kg-1 diet and 1000 IU vitamin D kg-1 diet) for next 4 months, and group VI was treated with 15 ppm of NaF through drinking water as well as supplemented with calcium and vitamin D for 4 months. NaF treatment caused dental fluorosis, skeletal fluorosis, and alteration of bone's metal profile. Substitution of NaF-containing water with normal drinking water reduced the severity of fluorosis but supplementation of calcium and vitamin D effectively alleviated dental and skeletal fluorosis, reduced F deposition, and retained elemental homeostasis of the bone. Our findings strongly support that calcium and vitamin D act as redeemer of fluorosis. Graphical Abstract.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 731235, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 731235, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 731235, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | | |
Collapse
|
12
|
Puty B, Bittencourt LO, Nogueira IC, Buzalaf MAR, Oliveira EH, Lima RR. Human cultured IMR-32 neuronal-like and U87 glial-like cells have different patterns of toxicity under fluoride exposure. PLoS One 2021; 16:e0251200. [PMID: 34138870 PMCID: PMC8211231 DOI: 10.1371/journal.pone.0251200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fluoride (F) is a naturally exists in nature but several studies have indicated it as an environmental toxicant to all leaving beings. Human F exposure has increased over the years since this ion has been used by industry on foods, beverages, toothpastes and on water supply. Although F is safe at optimal concentrations in water supply, human exposure to high levels could trigger neurofunctional deficits. MATERIALS AND METHODS In this study, human glial-like (U87) and neuronal-like (IMR-32) cells lineages were used to access F toxicity and CNS cell sensibility on both cell facing the same protocol. Cells were exposed to F over 3, 5 and 10 days on two different F concentrations. Fluoride exposed cells were evaluated by standard toxicity assays to cell viability, apoptosis, necrosis and general cell metabolism. Oxidative stress parameters were evaluated by ATP and ROS levels, lipid peroxidation, GSH/GSSG ratio and comet assay. RESULTS No changes were observed in IMR-32 at any given time while after 10 days of exposure to 0.22μg/mL, U87 glial-like cells showed signs of toxicity such as decreased cell viability by necrosis while general cell metabolism was increased. Oxidative stress parameters were next evaluated only on U87 glial-like cells after 10 days of exposure. F induced a decrease on ATP levels while no changes were observed on reactive oxygen species and lipid peroxidation. GSH/GSSG ratio was decreased followed by DNA damage both on 0.22μg/mL F. CONCLUSIONS Our results suggest an important differential behavior of the distinct types of cells exposed to the different fluoride concentrations, pointing that the U87 glial-like cells as more susceptible to damage triggered by this ion.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Iago Cesar Nogueira
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Edivaldo Herculano Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
13
|
Dong L, Si-Jia W, Bo G, Lei S, Guang-Yue L. Theoretical study on the sensing mechanism of a coumarin-based fluorescent probe for biological thiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119268. [PMID: 33310616 DOI: 10.1016/j.saa.2020.119268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The sensing mechanism of a reported fluorescence probe for cysteine, homocysteine and glutathione (Yin et al., 2018) has been investigated by time-dependent density functional theory. Experimental absorption and emission spectra of the probe before and after thiol addition were reproduced well by theoretical calculations, which validated the rationality of the method. Optimized geometries showed that the probe molecule had distinctly different geometries in its ground and excited states. It corresponded to the photoisomerization process and explained the weak fluorescence of the probe molecule. Moreover, by the potential energy curve scan, photoisomerization was further confirmed to be a spontaneous process with a barrier that barely existed. Frontier orbital analysis indicated that this photoinduced isomerization of the probe molecule derived from the antibonding character for lowest unoccupied molecular orbital at its CC double bond. In contrast, probe-thiol complexes exhibited similar geometries in their ground and excited states, which was responsible for the strong fluorescence of the probe with thiols. Due to distinct excited-processes, the probe can be used to sense thiols by monitoring the fluorescent change.
Collapse
Affiliation(s)
- Liu Dong
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Wang Si-Jia
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Gong Bo
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Shi Lei
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| | - Li Guang-Yue
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| |
Collapse
|
14
|
Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y, Zhou G, Ba Y. Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: Non-negligible role of RUNX2 promoter methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111031. [PMID: 32888610 DOI: 10.1016/j.ecoenv.2020.111031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Bone mineral density (BMD) changes were reported to be associated with excessive fluoride exposure and abnormal expression of RUNX2. However, whether the alteration of methylation status, a most commonly used marker for the alteration of gene expression in epidemiological investigation, of RUNX2 is associated with low-to-moderate fluoride exposure and BMD changes has not been reported. Our study aims to explore the role of RUNX2 promoter methylation in BMD changes induced by low-to-moderate fluoride exposure. A total of 1124 adults (413 men and 711 women) were recruited from Kaifeng City in 2017. We measured BMD using ultrasound bone densitometer. Concentrations of urinary fluoride (UF) were measured using ion-selective electrode, and the participants were grouped into control group (CG) and excessive fluoride group (EFG) according to the concentration of UF. We extracted DNA from fasting peripheral blood samples and then detected the promoter methylation levels of RUNX2 using quantitative methylation-specific PCR. Relationships between UF concentration, RUNX2 promoter methylation and BMD changes were analyzed using generalized linear model and logistic regression. Results showed in EFG (UF concentration > 1.6 mg/L), BMD was negatively correlated with UF concentration (β: -0.14; 95%CI: -0.26, -0.01) and RUNX2 promoter methylation (β: -0.13; 95%CI: -0.22, -0.03) in women. The methylation rate of RUNX2 promoter increased by 2.16% for each 1 mg/L increment in UF concentration of women in EFG (95%CI: 0.37, 3.96). No any significant associations between UF concentration, RUNX2 promoter methylation, and BMD were observed in the individuals in CG. Mediation analysis showed that RUNX2 promoter methylation mediated 18.2% (95% CI: 4.2%, 53.2%) of the association between UF concentration and BMD of women in EFG. In conclusion, excessive fluoride exposure (>1.6 mg/L) is associated with changes of BMD in women, and this association is mediated by RUNX2 promoter methylation.
Collapse
Affiliation(s)
- Minghui Gao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Long Sun
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Kaihong Xu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Luoming Zhang
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Yanli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Tongkun He
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Renjie Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Hui Huang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Jingyuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA.
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
15
|
Wang J, Xu H, Cheng X, Yang J, Yan Z, Ma H, Zhao Y, Ommati MM, Manthari RK, Wang J. Calcium relieves fluoride-induced bone damage through the PI3K/AKT pathway. Food Funct 2020; 11:1155-1164. [PMID: 31872845 DOI: 10.1039/c9fo02491c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone is the main target of fluorosis, and it has been perfectly elaborated that a moderate dosage of calcium (Ca) can alleviate bone fluorosis. However, whether Ca can alleviate fluorosis through the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway has not yet been reported. Hence, we evaluated the histopathological structure, the imbalance of the biochemical index of bone metabolism, and the expression levels of PI3K/AKT apoptosis signaling pathway-related genes in rats treated with sodium fluoride (NaF, F) and/or calcium carbonate (CaCO3) for 120 days. Our results suggest that 100 mg L-1 NaF induced histopathological injury as alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (StrACP) activity increased, with a decrease in the serum Ca levels (p < 0.05). Moreover, the results of qRT-PCR and western blotting showed that F increased the expression levels of transglutaminase 2 (TGM2), focal adhesion kinase (FAK), PI3K, AKT, forkhead box O1 (Foxo1), Bcl-2 interacting mediator of cell death (BIM), Bcl2-associated x protein (Bax) and Caspase 3 (p < 0.05, p < 0.01). It also decreased the expression of AnnexinA5 (Anxa5), 3'-phosphoinositide-dependent kinase 1 (PDK1) and B-cell lymphoma-2 (Bcl-2) (p < 0.05, p < 0.01), which finally activated the PI3K/AKT pathway. On the other hand, CaCO3 supplementation reversed the histopathological injury along with the levels of ALP, StrACP and serum Ca, alleviating the gene expression levels of PI3K/AKT pathway-related markers. Altogether, we can conclude that CaCO3 supplementation mitigated F-induced bone damage via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jinming Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xie J, Yan X, Xu G, Tian X, Dong N, Feng J, Liu P, Li M, Zhao Y, Wei C, Lyu Y, Ma G, Song G, Wang T, Yan X. ITRAQ-based proteomics reveals the potential mechanism of fluoride-induced myocardial contraction function damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110605. [PMID: 32311614 DOI: 10.1016/j.ecoenv.2020.110605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Fluorosis is a worldwide public health problem, and its adverse effects on the heart have been confirmed by many studies. Abnormal myocardial contractions are often associated with impairment of cardiac function as a cause or consequence. We designed two-part experiments to search for biomarkers and clarify the underlying molecular mechanism of fluoride on myocardial contraction. First, we used Pressure-volume Loop analysis to evaluate changes in myocardial function indexes with multiple fluoride exposure levels in mice (0, 30, 70, and 150 mg/L) exposed for 4 weeks. The results showed that fluoride exposure affects the heart pump function and reduces cardiac contractility. Then, we established a rat model of fluoride exposure (0, 30, 60, and 90 mg/L) for 6 months to carry out proteomic analysis of fluoride-induced myocardial contractile injury. Hematoxylin-eosin (H&E) staining was used to determine the severity of myocardial injury, and myocardial tissue samples were submitted for isobaric tags for relative and absolute quantitation (ITRAQ) analysis. A total of 1607 proteins were successfully identified with 294 differentially expressed proteins (DEPs) in fluoride treated groups. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 12 DEPs were confirmed to be involved in pathways related to myocardial contraction. Furthermore, we constructed a protein-protein interaction (PPI) network for these 12 core DEPs to illustrate the role and location of each DEP in the myocardial contraction pathway. The results of this study are helpful for identify a potential mechanism and biomarkers of fluoride-induced myocardial contraction function damage, moreover, which can provide a new insight into the heart toxicity of fluoride in animals at the proteomics level.
Collapse
Affiliation(s)
- Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoting Yan
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guoqiang Xu
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guijin Ma
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
17
|
Liu D, Shi L, Gao SH, Wu YH, Li GY, Zhou CH. Twisted intramolecular charge transfer: A time-dependent density functional theory study on the sensing mechanism of a Schiff base sensor for fluoride. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Wang J, Yang J, Cheng X, Xiao R, Zhao Y, Xu H, Zhu Y, Yan Z, Ommati MM, Manthari RK, Wang J. Calcium Alleviates Fluoride-Induced Bone Damage by Inhibiting Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10832-10843. [PMID: 31464433 DOI: 10.1021/acs.jafc.9b04295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive fluoride mainly causes skeletal lesions. Recently, it has been reported that an appropriate level of calcium can alleviate fluorosis. However, the appropriate concentration and mechanism of calcium addition is unclear. Hence, we evaluated the histopathology and ultrastructure, DNA fragmentation, hormonal imbalances, biomechanical levels, and expression of apoptosis-related genes after treating the rats with 150 mg/L NaF and different concentrations of CaCO3. Our results suggested that NaF induced the histopathological and ultrastructural injury, with a concomitant increase in the DNA fragmentation (P < 0.05) and serum OC (17.5 ± 0.89 pmoL/L) at 120 days. In addition, the qRT-PCR and western blotting results indicated that NaF exposure upregulated the mRNA and protein expression of Bax, Calpain, Caspase 12, Caspase 9, Caspase 7, Caspase 3, CAD, PARP, and AIF while downregulated Bcl-2 (P < 0.01) and decreased the bone ultimate load by 27.1%, the ultimate stress by 10.1%, and the ultimate deformity by 23.3% at 120 days. However, 1% CaCO3 supplementation decreased the serum OC (14.7 ± 0.65 pmoL/L), bone F content (P < 0.01), and fracture and breakage of collagen fibers and changed the expression of endoplasmic reticulum pathway-related genes and proteins at 120 days. Further, 1% CaCO3 supplementation increased the bone ultimate load by 20.9%, the ultimate stress by 4.89%, and the ultimate deformity by 21.6%. In summary, we conclude that 1% CaCO3 supplementation alleviated fluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
|
19
|
Translating from lab-use to household: Dual-functional upconversion nanoprobes for solar-powered photothermal fluorosis diagnosis. Biosens Bioelectron 2019; 140:111341. [DOI: 10.1016/j.bios.2019.111341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023]
|
20
|
Wang F, Li C, Qin Y, Han X, Gao J, Zhang A, Luo P, Pan X. Analysis of the microRNA Profile of Coal-Burning Endemic Fluorosis Using Deep Sequencing and Bioinformatic Approaches. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:56-63. [PMID: 31256201 DOI: 10.1007/s00128-019-02660-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) differentially expressed in plasma were identified using microRNA sequencing (miRNA-seq), and five miRNAs were selected for validation. Potential target genes of these five miRNAs were predicted using the miRWalk3.0 database, and the overlapping portions were analyzed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Comparison of the cases and controls revealed 127 known differentially expressed miRNAs. A total of 44 and 83 miRNAs were upregulated and downregulated, respectively. Through target gene prediction of five miRNAs, we obtained 1360 target genes. GO enrichment analysis showed that the target genes of these dysregulated miRNAs were related with secretion, protein binding, and cell growth. The KEGG pathway analysis showed that pathways in cancer, calcium signaling, and rat sarcoma (Ras) signaling, etc. were likely regulated by these five miRNAs. These findings highlight the distinct expression patterns of miRNAs in coal-burning endemic fluorosis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Chen Li
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Xue Han
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Jiayu Gao
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xueli Pan
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
21
|
Wang X, Zhang J, Zhou L, Xu B, Ren X, He K, Nie L, Li X, Liu J, Yang X, Yuan J. Long-term iron exposure causes widespread molecular alterations associated with memory impairment in mice. Food Chem Toxicol 2019; 130:242-252. [PMID: 31136779 DOI: 10.1016/j.fct.2019.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Limited literature available indicates the neurotoxic effects of excessive iron, however, a deep understanding of iron neurotoxicity needs to be developed. In this study, we evaluated the toxic effects of excessive iron on learning and cognitive function in long-term iron exposure (oral, 10 mg/L, 6 months) of mice by behavioral tests including novel object recognition test, step-down passive avoidance test and Morris water maze test, and further analyzed differential expression of hippocampal proteins. The behavioral tests consistently showed that iron treatment caused cognitive defects of the mice. Proteomic analysis revealed 66 differentially expressed hippocampal proteins (30 increased and 36 decreased) in iron-treated mice as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: synapse-associated proteins (i.e. synaptosomal-associated protein 25 (SNAP25), complexin-1 (CPLX1), vesicle-associated membrane protein 2 (VAMP2), neurochondrin (NCDN)); mitochondria-related proteins (i.e. ADP/ATP translocase 1 (SLC25A4), 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. neurofilament light polypeptide (NEFL), tubulin beta-2B chain (TUBB2B), tubulin alpha-4A chain (TUBA4A)). The findings suggest that the dysregulations of synaptic, mitochondrial, and cytoskeletal proteins may be involved in iron-triggered memory impairment. This study provides new insights into the molecular mechanisms of iron neurotoxicity.
Collapse
Affiliation(s)
- Xian Wang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jiafei Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiao Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
22
|
Li X, Meng L, Wang F, Hu X, Yu Y. Sodium fluoride induces apoptosis and autophagy via the endoplasmic reticulum stress pathway in MC3T3-E1 osteoblastic cells. Mol Cell Biochem 2018; 454:77-85. [PMID: 30519783 DOI: 10.1007/s11010-018-3454-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Fluorosis and bone pathologies can be caused by chronic and/or excessive fluoride intake. Despite this, few studies have been conducted on the cellular mechanisms underlying osteoblast toxicity in the presence of NaF. Here, we investigated the effects of fluoride on MC3T3-E1 cells. We showed that the proliferation of MC3T3-E1 cells was inhibited by exposure to NaF. In addition, apoptosis was induced by NaF, as caspase-associated proteins showed a higher level of expression and apoptotic bodies were formed. Furthermore, endoplasmic reticulum (ER) stress induced by NaF activated the unfolded protein response (UPR) and upregulated the expression of the glucose-regulated proteins 94 (GRP94) and 78 (BiP). Therefore, ER stress plays a vital role in NaF-induced autophagy and apoptosis. Furthermore, apoptosis is promoted following the inhibition of NaF-induced autophagy. In conclusion, under NaF treatment, the ER stress-signaling pathway is activated, leading to apoptosis and autophagy and affecting the proliferation and survival of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Stomatology, Eye & Ent Hospital of Fudan University, Shanghai, 200031, China
| | - Li Meng
- Department of Pharmacy, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Feng Wang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaojie Hu
- Plastic and Reconstructive Department, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|