1
|
Liu J, Zuo X, Bi J, Li H, Li Y, Ma J, Wang S. Palliative Effect of Combined Application of Zinc and Selenium on Reproductive Injury Induced by Tripterygium Glycosides in Male Rats. Biol Trace Elem Res 2024; 202:5081-5093. [PMID: 38190060 DOI: 10.1007/s12011-023-04054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The long-term use of tripterygium glycosides (TG) can lead to male reproductive damage. Research indicates that zinc and selenium exhibit a synergistic effect in the male reproductive system, with the combined preparation demonstrating superior therapeutic effects compared to individual preparations. The purpose of this study was to explore the specific mechanism by which zinc and selenium mitigate reproductive toxicity induced by TG in male rats. Rats were randomly assigned to three groups: control group (C group), model group (M group, receiving TG at 30 mg/kg/day), and model + zinc + selenium group (ZS group). The ZS group was also given TG gavage for the first 4 weeks. Starting from the fifth week until the conclusion of the eighth week, the ZS group received an additional protective treatment of 10 mg/kg/day Zn and 0.1 mg/kg/day Se 4 h after TG administration. Following euthanasia, blood samples, rat testis, and epididymis tissues were collected for further experiments. Combined zinc-selenium treatment corrects the imbalance of zinc-selenium homeostasis in testicular tissue induced by TG. This is achieved by upregulating the expression of metal transcription factor (MTF1) and zinc transporters ZIP8 and ZIP14 and downregulating the expression of ZnT10. Improvement of zinc and selenium homeostasis enhanced the expression of zinc-containing enzymes (ADH, LDH, and ALP) and selenoproteins (GPx1 and SELENOP) in the testis. At the same time, zinc and selenium mitigate TG-induced reproductive damage by promoting the activity of antioxidant enzymes and upregulating the expression of proteins associated with the oxidative stress pathway, including Nrf2, Keap1, HO-1, PI3K, and p-AKT.
Collapse
Affiliation(s)
- Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Zuo
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yuanjing Li
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Shusong Wang
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
2
|
Dong PY, Yuan S, Chen Yan YM, Chen Y, Bai Y, Dong Y, Li YY, Shen W, Zhang XF. A multi-omics approach reveals that lotus root polysaccharide iron ameliorates iron deficiency-induced testicular damage by activating PPARγ to promote steroid hormone synthesis. J Adv Res 2024:S2090-1232(24)00424-7. [PMID: 39343163 DOI: 10.1016/j.jare.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Iron deficiency is a common nutritional issue that seriously affects male reproductive health. Lotus root polysaccharide iron (LRPF), a novel nutritional supplement, may ameliorate the damage caused by iron deficiency, however, the mechanism is unclear. In this study, we comprehensively determined the benefits of LRPF on reproduction in iron-deficient mice by integrating transcriptomics, microbiomics and serum metabolomics. Microbiomics showed that LRPF could restore changes to the intestinal microbiota caused by iron deficiency. Metabolomics results showed that LRPF stabilised steroid hormone and fatty acid metabolism in iron-deficient mice, reduced the content of ethyl chrysanthemumate (EC) and ameliorated the reproductive impairment. The transcriptomic analysis showed that LRPF regulated steroid hormone synthesis and the peroxisome proliferator-activated receptor (PPAR) signalling pathway in iron-deficient mice. In vitro experiments showed that LRPF could promote steroid hormone synthesis in Leydig cells by activating PPARγ. In conclusion, this study highlights the advantage of LRPF to improve testicular development.
Collapse
Affiliation(s)
- Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yue Bai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yang Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yin-Yin Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|
3
|
He Z, Botchway BOA, Zhang Y, Liu X. Triptolide activates the Nrf2 signaling pathway and inhibits the NF-κB signaling pathway to improve Alzheimer disease. Metab Brain Dis 2024; 39:173-182. [PMID: 37624431 DOI: 10.1007/s11011-023-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with pathological features of accumulated amyloid plaques, neurofibrillary tangles, and the significant inflammatory environment. These features modify the living microenvironment for nerve cells, causing the damage, dysfunction, and death. Progressive neuronal loss directly leads to cognitive decline in AD patients and is closely related to brain inflammation. Therefore, impairing inflammation via signaling pathways may facilitate either the prevention or delay of the degenerative process. Triptolide has been evidenced to possess potent anti-inflammatory effect. In this review, we elaborate on two signaling pathways (the NF-κB and Nrf2 signaling pathways) that are involved in the anti-inflammatory effect of triptolide.
Collapse
Affiliation(s)
- Zuoting He
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, Kensington, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China.
| |
Collapse
|
4
|
Zhang HR, Li YP, Shi ZJ, Liang QQ, Chen SY, You YP, Yuan T, Xu R, Xu LH, Ouyang DY, Zha QB, He XH. Triptolide induces PANoptosis in macrophages and causes organ injury in mice. Apoptosis 2023; 28:1646-1665. [PMID: 37702860 DOI: 10.1007/s10495-023-01886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| |
Collapse
|
5
|
Zhao M, Yu WX, Liu SJ, Deng YJ, Zhao ZW, Guo J, Gao QH. Identification and immuno-infiltration analysis of cuproptosis regulators in human spermatogenic dysfunction. Front Genet 2023; 14:1115669. [PMID: 37065492 PMCID: PMC10090386 DOI: 10.3389/fgene.2023.1115669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Cuproptosis seems to promote the progression of diverse diseases. Hence, we explored the cuproptosis regulators in human spermatogenic dysfunction (SD), analyzed the condition of immune cell infiltration, and constructed a predictive model.Methods: Two microarray datasets (GSE4797 and GSE45885) related to male infertility (MI) patients with SD were downloaded from the Gene Expression Omnibus (GEO) database. We utilized the GSE4797 dataset to obtain differentially expressed cuproptosis-related genes (deCRGs) between SD and normal controls. The correlation between deCRGs and immune cell infiltration status was analyzed. We also explored the molecular clusters of CRGs and the status of immune cell infiltration. Notably, weighted gene co-expression network analysis (WGCNA) was used to identify the cluster-specific differentially expressed genes (DEGs). Moreso, gene set variation analysis (GSVA) was performed to annotate the enriched genes. Subsequently, we selected an optimal machine-learning model from four models. Finally, nomograms, calibration curves, decision curve analysis (DCA), and the GSE45885 dataset were utilized to verify the predictions’ accuracy.Results: Among SD and normal controls, we confirmed that there are deCRGs and activated immune responses. Through the GSE4797 dataset, we obtained 11 deCRGs. ATP7A, ATP7B, SLC31A1, FDX1, PDHA1, PDHB, GLS, CDKN2A, DBT, and GCSH were highly expressed in testicular tissues with SD, whereas LIAS was lowly expressed. Additionally, two clusters were identified in SD. Immune-infiltration analysis showed the existing heterogeneity of immunity at these two clusters. Cuproptosis-related molecular Cluster2 was marked by enhanced expressions of ATP7A, SLC31A1, PDHA1, PDHB, CDKN2A, DBT, and higher proportions of resting memory CD4+ T cells. Furthermore, an eXtreme Gradient Boosting (XGB) model based on 5-gene was built, which showed superior performance on the external validation dataset GSE45885 (AUC = 0.812). Therefore, the combined nomogram, calibration curve, and DCA results demonstrated the accuracy of predicting SD.Conclusion: Our study preliminarily illustrates the relationship between SD and cuproptosis. Moreover, a bright predictive model was developed.
Collapse
Affiliation(s)
- Ming Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xiao Yu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi-Wei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jun Guo, ; Qing-He Gao,
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jun Guo, ; Qing-He Gao,
| |
Collapse
|
6
|
Qin Z, Zhang G, Jiang S, Ning F, Zhao Z, Huang M, Jin J. Integration of metabolomics and transcriptomics to reveal ferroptosis is involved in Tripterygium wilfordii polyglycoside tablet-induced testicular injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116055. [PMID: 36539070 DOI: 10.1016/j.jep.2022.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycoside tablet (TWP), a traditional Chinese medicine preparation, has multiple pharmacological properties, including anti-inflammatory, immune-modulatory and anti-proliferative activities. However, the reproductive toxicity of TWP greatly limits its clinical application and the mechanism of TWP-induced reproductive toxicity is not fully understood yet. AIM OF THE STUDY This study was designed to explore the mechanism of TWP-induced testis injury in male rats. MATERIALS AND METHODS The mechanism underlying TWP-induced rat testicular injury was firstly investigated by integration of metabolomics and transcriptomics. Meanwhile, histopathological analysis, Western blot and RT-qPCR were performed to confirm the damaging effects and mechanisms of TWP on rat testis. RESULTS Histopathological analysis revealed that TWP had significant testicular damage, which severely reduced the testis's tubular diameter and epithelium height. Further, TWP caused the protein level of ZO-1, CLDN11, PLZF, and OCT4 significantly downregulate, suggesting the blood-testis barrier function and spermatogenesis were damaged. Differentially expressed genes (DEGs), including 4952 upregulated and 2626 downregulated, were found in TWP-exposed testis compared to the normal group. Moreover, 77 changed metabolites were identified from testis samples. With integrated analysis of DEGs and changed metabolites, we found that glutathione metabolism and ferroptosis played an essential role in testicular injury. Additionally, the levels of ferroptosis-related protein GPX4, SLC7A11, and NRF2 were significantly downregulated, and the protein level of 4-HNE, a leading product of lipid peroxidation and oxidative stress, was upregulated. The changes in ferroptosis-related genes indicated that TWP might promote ferroptosis in rat testis. CONCLUSION These results suggested that ferroptosis was involved in the testicular damage caused by TWP, which might provide a new strategy to alleviate TWP- induced testicular injury.
Collapse
Affiliation(s)
- Zhiyan Qin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gengyi Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiqin Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangqing Ning
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Han S, Dai Y, Sun L, Xing Y, Ding Y, Zhang X, Xu S. Molecular mechanism of Cuscutae semen-radix rehmanniae praeparata in relieving reproductive injury of male rats induced with tripterygium wilfordii multiglycosides: A tandem mass tag-based proteomics analysis. Front Pharmacol 2023; 14:1050907. [PMID: 36874004 PMCID: PMC9982038 DOI: 10.3389/fphar.2023.1050907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Background: We determined the effects of Cuscutae semen (Cuscuta chinensis Lam. or Cuscuta australis R. Br.)-Radix rehmanniae praeparata (Rehjnannia glutinosa Libosch.) on the protein levels in testicular tissues of rats gavaged with tripterygium wilfordii multiglycosides (GTW) and elucidated the molecular mechanism underlying Cuscutae semen-Radix rehmanniae praeparata for relieving GTW-induced reproductive injury. Methods: A total of 21 male Sprague-Dawley rats were randomly divided into the control group, model group, and Cuscutae semen-Radix rehmanniae praeparata group based on their body weights. The control group was given 10 mLkg-1 of 0.9% normal saline by gavage daily. The model group (GTW group) was administered with 12 mg kg-1 GTW by gavage daily. Cuscutae semen-Radix rehmanniae praeparata group (the TSZSDH group) was administered with 1.56 gkg-1 of Cuscutae semen-Radix rehmanniae praeparata granules daily according to their model group dosing. The serum levels of luteinizing hormone, follicle-stimulating hormone, estradiol, and testosterone were measured after 12 weeks of continuous gavage, and the pathological lesion of testicular tissues was observed. Differentially expressed proteins were evaluated by quantitative proteomics and verified by western blotting (WB) and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). Results: Cuscutae semen-Radix rehmanniae praeparata can effectively relieve pathological lesions of GTW-induced testicular tissues. A total of 216 differentially expressed proteins were identified in the TSZSDH group and model group. High-throughput proteomics revealed that differentially expressed proteins are closely associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway, protein digestion and absorption, and protein glycan pathway in cancer. Cuscutae semen-Radix rehmanniae praeparata can significantly upregulate the protein expressions of Acsl1, Plin1, Dbil5, Plin4, Col12a1, Col1a1, Col5a3, Col1a2, Dcn, so as to play a protective role on testicular tissues. Acsl1, Plin1, and PPARγ on the PPAR signaling pathway were verified by WB and RT-qPCR experiments, which were found to be consistent with the results of proteomics analysis. Conclusion: Cuscutae semen and Radix rehmanniae praeparata may regulate the PPAR signaling pathway mediated Acsl1, Plin1 and PPARγ to reduce the testicular tissue damage of male rats caused by GTW.
Collapse
Affiliation(s)
- Shanshan Han
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yanlin Dai
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lihui Sun
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yaping Xing
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Ding
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xia Zhang
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Qi XM, Qiao YB, Zhang YL, Wang AC, Ren JH, Wei HZ, Li QS. PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis: A druggable pathway of calycosin against triptolide cardiotoxicity. Food Chem Toxicol 2022; 171:113513. [PMID: 36436616 DOI: 10.1016/j.fct.2022.113513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Mitochondrion-related cardiotoxicity due to cardiotoxin stimuli is closely linked to abnormal activities of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), followed by co-inactivation of nuclear respiratory factor-1(NRF1). Pharmacological interventions targeting mitochondria may be effective for developing agents against cardiotoxicity. Herein, in triptolide-treated H9C2 cardiomyocytes, we observed defective mitochondrial biogenesis and respiration, characterized by depletion of mitochondrial mass and mitochondrial DNA copy number, downregulation of mitochondrial respiratory chain complexes subunits, and disorders of mitochondrial membrane potential and mitochondrial oxidative phosphorylation. Dysregulation of mitochondria led to cardiac pathological features, such as myocardial fiber fracture, intercellular space enlargement, and elevation of serum aspartate aminotransferase, creatine kinase isoenzyme, lactate dehydrogenase, and cardiac troponin I. However, following calycosin treatment, an active compound from Astragali Radix, the mitochondrion-related disorders at both cell and tissue levels were significantly ameliorated, which was facilitated by the activation of PGC-1α via deacetylation, followed by NRF1 co-activation. Calycosin-enhanced PGC-1α deacetylation is impelled by increasing sirtuin-1 expression and NAD+/NADH ratio. PGC-1α/NRF1 signaling in calycosin-mediated mitochondrial biogenesis protection was further confirmed by NRF1 knockdown and PGC-1α inhibition with SR18292. We conclude that calycosin ameliorated triptolide-induced cardiotoxicity by protecting PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis and respiration, which is the druggable pathway for cardiotoxicity mitigation.
Collapse
Affiliation(s)
- Xiao-Ming Qi
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Ai-Cheng Wang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Jin-Hong Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Hui-Zhi Wei
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China.
| |
Collapse
|
9
|
Risk compounds, potential mechanisms and biomarkers of Traditional Chinese medicine‐induced reproductive toxicity. J Appl Toxicol 2022; 42:1734-1756. [DOI: 10.1002/jat.4290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
|
10
|
Wang Y, Li J, Gu J, He W, Ma B, Fan H. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:985-995. [PMID: 35325199 DOI: 10.1093/jpp/rgac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jingyu Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hongqi Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
11
|
Zhao Q, Huang JF, Cheng Y, Dai MY, Zhu WF, Yang XW, Gonzalez FJ, Li F. Polyamine metabolism links gut microbiota and testicular dysfunction. MICROBIOME 2021; 9:224. [PMID: 34758869 PMCID: PMC8582214 DOI: 10.1186/s40168-021-01157-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Male fertility impaired by exogenous toxins is a serious worldwide issue threatening the health of the new-born and causing infertility. However, the metabolic connection between toxic exposures and testicular dysfunction remains unclear. RESULTS In the present study, the metabolic disorder of testicular dysfunction was investigated using triptolide-induced testicular injury in mice. We found that triptolide induced spermine deficiency resulting from disruption of polyamine biosynthesis and uptake in testis, and perturbation of the gut microbiota. Supplementation with exogenous spermine reversed triptolide-induced testicular dysfunction through increasing the expression of genes related to early and late spermatogenic events, as well as increasing the reduced number of offspring. Loss of gut microbiota by antibiotic treatment resulted in depletion of spermine levels in the intestine and potentiation of testicular injury. Testicular dysfunction in triptolide-treated mice was reversed by gut microbial transplantation from untreated mice and supplementation with polyamine-producing Parabacteroides distasonis. The protective effect of spermine during testicular injury was largely dependent on upregulation of heat shock protein 70s (HSP70s) both in vivo and in vitro. CONCLUSIONS The present study linked alterations in the gut microbiota to testicular dysfunction through disruption of polyamine metabolism. The diversity and dynamics of the gut microbiota may be considered as a therapeutic option to prevent male infertility. Video Abstract.
Collapse
Affiliation(s)
- Qi Zhao
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Shanwei Institute for Food and Drug Control, Shanwei, Guangdong Province 516622 China
| | - Yan Cheng
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Man-Yun Dai
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Wei-Feng Zhu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191 China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Fei Li
- Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
12
|
Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells. Toxicol Appl Pharmacol 2021; 425:115606. [PMID: 34087332 DOI: 10.1016/j.taap.2021.115606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.
Collapse
|
13
|
Dong W, Zhang K, Liu G, Tan Y, Zou H, Yuan Y, Gu J, Song R, Zhu J, Liu Z. Puerarin prevents cadmium-induced disorder of testicular lactic acid metabolism in rats by activating 5' AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:945-957. [PMID: 33404196 DOI: 10.1002/tox.23096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) interferes with the function of the male reproductive system; however, the molecular mechanism is poorly understood. This study aimed to evaluate the effect of puerarin (PU) on Cd-induced testicular lactic acid metabolism disorder. Weaning male Sprague-Dawley rats were pre-fed for 7 days, weighed, and randomly divided into four groups: Control group, CdAc2 group, CdAc2 + PU group, PU group. The results showed that Cd accumulated in the testis, the testicles became congested and shrank, and the testis index decreased in the rats treated in the CdAc2 group. Cadmium exposure reduced the serum concentration of testosterone, and the concentration of lactic acid and pyruvate in the testis. Cd decreased testicular superoxide dismutase activity and total antioxidant capacity, and increased testicular malondialdehyde levels. Cd reduced the level of ATP, glycolytic gene expression, and lactate production-related proteins in the testis. Cd also decreased the expression of 5' AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway-related proteins in the testis. However, these negative effects were attenuated by PU administration. In summary, Cd reduces the production of lactic acid in the testis of rats, while PU administration restores the production of lactic acid and reduces the toxicity of Cd to the testis of rats.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yun Tan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Testis Toxicants: Lesson from Traditional Chinese Medicine (TCM). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:307-319. [PMID: 34453743 DOI: 10.1007/978-3-030-77779-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The testis is one of the organs in the mammalian body that is sensitive to toxicants. Accumulating evidence has shown that human exposure to toxic ingredients in Traditional Chinese Medicine (TCM), such as triptolide, gossypol, cannabidol, piperine, α-solanine, matrine, aristolochic acid, and emodin, lead to testis injury and reproductive dysfunction. The most obvious phenotype is reduced sperm counts due to defects in spermatogenesis. Studies have also shown that Sertoli cells in the seminiferous tubule, the functional unit of the testis that supports spermatogenesis, are the cell type that is most sensitive to the disruptive effects of toxicants. Since Sertoli cells are the "mother cells" that nurture germ cell development, Sertoli cell injury thus leads to failure in germ cell development in the seminiferous epithelium. Mounting evidence has shown that the Sertoli cell cytoskeletons, mitochondria function, Leydig cells steroidogenesis pathways and sperm ion channels are some of the prime targets of toxicants from TCM. We carefully evaluate recent findings in this area of research herein, and to provide a summary of these findings, including some insightful information regarding the underlying molecular basis of toxicant-induced testis injury that impede spermatogenesis.
Collapse
|
15
|
Song X, Zhang Y, Dai E. Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review). Mol Med Rep 2020; 21:2303-2310. [PMID: 32323812 DOI: 10.3892/mmr.2020.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 11/05/2022] Open
Abstract
Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF‑κB, endoplasmic reticulum Ca2+‑ATPase, myeloid differentiation factor 2, toll‑like receptor 4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF‑κB, the receptor activator of NF‑κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase‑2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi‑target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| |
Collapse
|
16
|
Xi Y, Zhang Y, Zhu S, Luo Y, Xu P, Huang Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020; 9:cells9020352. [PMID: 32028670 PMCID: PMC7072218 DOI: 10.3390/cells9020352] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.
Collapse
Affiliation(s)
- Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yunhui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuping Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| |
Collapse
|
17
|
Triptolide dysregulates glucose uptake via inhibition of IKKβ-NF-κB pathway by p53 activation in cardiomyocytes. Toxicol Lett 2020; 318:1-11. [DOI: 10.1016/j.toxlet.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
|
18
|
Cai P, Feng N, Zheng W, Zheng H, Zou H, Yuan Y, Liu X, Liu Z, Gu J, Bian J. Treatment with, Resveratrol, a SIRT1 Activator, Prevents Zearalenone-Induced Lactic Acid Metabolism Disorder in Rat Sertoli Cells. Molecules 2019; 24:E2474. [PMID: 31284444 PMCID: PMC6651738 DOI: 10.3390/molecules24132474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Zearalenone (ZEA) interferes with the function of the male reproductive system, but its molecular mechanism has yet to be completely elucidated. Sertoli cells (SCs) are important in the male reproductive system. Silencing information regulator 1 (SIRT1) is a cell metabolism sensor and resveratrol (RSV) is an activator of SIRT1. In this study we investigated whether SIRT1 is involved in the regulation of ZEA-induced lactate metabolism disorder in SCs. The results showed that the cytotoxicity of ZEA toward SCs increased with increasing ZEA concentration. Moreover, ZEA induced a decrease in the production of lactic acid and pyruvate of SCs and inhibited the expression of glycolytic genes and lactic acid production-related proteins. ZEA also led to a decreased expression of SIRT1 in energy receptors and decreased ATP levels in SCs. However, the ZEA-induced cytotoxicity and decline in lactic acid production in SCs were alleviated by the use of RSV, which is an activator of SIRT1. In summary, ZEA decreased lactic acid production in SCs, while the treatment with an SIRT1 activator, RSV, restored the inhibition of lactic acid production in SCs and reduced cytotoxicity of ZEA toward SCs.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hao Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
19
|
MitoQ ameliorates testis injury from oxidative attack by repairing mitochondria and promoting the Keap1-Nrf2 pathway. Toxicol Appl Pharmacol 2019; 370:78-92. [DOI: 10.1016/j.taap.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
|
20
|
Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK Function in Mammalian Spermatozoa. Int J Mol Sci 2018; 19:ijms19113293. [PMID: 30360525 PMCID: PMC6275045 DOI: 10.3390/ijms19113293] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 40050-313 Porto, Portugal.
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Hormones and Metabolism Research Group, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Lauro Gonzalez-Fernandez
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Luis Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - M Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|