1
|
Rodrigues CE, Endre ZH. Definitions, phenotypes, and subphenotypes in acute kidney injury-Moving towards precision medicine. Nephrology (Carlton) 2023; 28:83-96. [PMID: 36370326 PMCID: PMC10100386 DOI: 10.1111/nep.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
The current definition of acute kidney injury (AKI) is generic and, based only on markers of function, is unsuitable for guiding individualized treatment. AKI is a complex syndrome with multiple presentations and causes. Targeted AKI management will only be possible if different phenotypes and subphenotypes of AKI are recognised, based on causation and related pathophysiology. Molecular signatures to identify subphenotypes are being recognised, as specific biomarkers reveal activated pathways. Assessment of individual clinical risk needs wider dissemination to allow identification of patients at high risk of AKI. New and more timely markers for glomerular filtration rate (GFR) are available. However, AKI diagnosis and classification should not be limited to GFR, but include tubular function and damage. Combining damage and stress biomarkers with functional markers enhances risk prediction, and identifies a population enriched for clinical trials targeting AKI. We review novel developments and aim to encourage implementation of these new techniques into clinical practice as a strategy for individualizing AKI treatment akin to a precision medicine-based approach.
Collapse
Affiliation(s)
- Camila Eleuterio Rodrigues
- Nephrology DepartmentPrince of Wales Clinical School – UNSW MedicineSydneyNew South WalesAustralia
- Nephrology DepartmentHospital das Clínicas – University of São Paulo School of MedicineSão PauloBrazil
| | - Zoltán H. Endre
- Nephrology DepartmentPrince of Wales Clinical School – UNSW MedicineSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Epidemiology and renal injury following 2-methyl-4-chlorophenoxyacetic acid (MCPA) poisoning. Sci Rep 2022; 12:21940. [PMID: 36535986 PMCID: PMC9763389 DOI: 10.1038/s41598-022-25313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used chlorophenoxy herbicide. MCPA poisoning causes mitochondrial dysfunction, which can lead to kidney injury and death. The objective of this study is to describe the epidemiology, case fatality and extent of renal injury in a large cohort of MCPA self-poisonings. The study consists of two parts: (1) A report of epidemiological data and clinical outcomes in MCPA poisoned patients in Sri Lanka between 2002 and 2019; (2) Evaluation of acute kidney injury (AKI) using renal biomarkers in a subset from this cohort. Serum creatinine (sCr) and biomarkers were measured soon after hospitalization (2 [IQR 1-3] h) and at different time intervals. We measured serum biomarkers: sCr, cystatin C (sCysC), creatine kinase (CK), and urinary biomarkers: creatinine, kidney injury molecule-1 (KIM-1), clusterin, albumin, beta-2-microglobulin (β2M), cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), osteopontin (OPN), trefoil factor 3 (TFF3) and cytochrome C (CytoC). Kidney Disease Improving Global Outcomes (KDIGO) criteria was used to define acute kidney injury (AKI). There were 1653 patients; 65% were male. The median time from ingestion to examination was 3:54 (IQR 2:19-6:57) h. The overall case-fatality rate was 5.3%. Patients who died were older (42 [IQR 33.5-54] vs 27 [IQR 20-37] for survivors). The median estimated amount of MCPA ingested by patients who died was also greater (88 [IQR 34-200] vs. 30 [IQR 15-63] ml in survivors). Moderate to severe AKI (AKI2/3) was uncommon (6/59 patients in the biomarker study had KDIGO stage 2 or 3). Most patients in AKI2/3 group with increased sCr were older (median age 35 years [IQR 27-41]) compared to No AKI (23 years (19-29) years) or AKI1 (26 years (21-40) years) group who had no or mild increase in sCr. These patients had no pre-existing kidney diseases. In these patients, serum creatinine (maximum medium concentration; 1.12 [IQR 0.93-1.67] mg/dl) and CK (maximum medium concentration; 284 [IQR 94-428] U/l) were increased but sCysC (maximum medium concentration; 0.79 [IQR 0.68-0.81] mg/l) remained in the normal range within 72 h. All urinary biomarkers performed poorly in diagnosing AKI (area under the receiver operating characteristic curve < 0.68). The higher numbers of men with MCPA poisoning likely reflects greater occupational access to pesticides. Fatal outcome and higher ingested dose were more common in the elderly. Significant AKI with tubular injury biomarkers was uncommon. Most people with raised sCr were older and appeared to have no pre-existing kidney disease.
Collapse
|
3
|
Miao T, Li M, Shao T, Jiang X, Jiang L, Zhou Q, Pan Y, Wang Y, Qiu J. The involvement of branched-chain amino acids (BCAAs) in aromatic trihalogenated DBP exposure-induced kidney damage in mice. CHEMOSPHERE 2022; 305:135351. [PMID: 35718037 DOI: 10.1016/j.chemosphere.2022.135351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Disinfection by-products (DBPs) are inevitably generated in the process of disinfection. Among them, aromatic halogenated DBPs, such as 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP), have attracted considerable interest for their high toxicity. A systematic nephrotoxicity evaluation of 2,4,6-trihalophenols is still lacking. In this study, mice were exposed to TCP, TBP and TIP ranging from environmental-related low concentration to high concentration that commonly used in animal study (0.5-200 μg/L). Kidney histopathology, urine protein detection and urine metabolomics were performed. Remarkable changes including kidney damage, proteinuria and glomerular mesangial cell proliferation were observed after three 2,4,6-trihalophenol exposure, even at low concentration of 0.5 μg/L. The nephrotoxicity rank order was TIP > TBP > TCP. Additionally, in vivo exposure to 2,4,6-trihalophenols also led to apparent changes in urinary metabolic profiles. Biosynthesis pathways of branched-chain amino acids (BCAAs, containing valine, leucine and isoleucine) were disturbed even at the early stage of exposure (4 weeks). Intriguingly, it has been reported that BCAAs could promote the proliferation of glomerular mesangial cells. Thus, in vitro cell experiments were further performed on mouse glomerular mesangial cell line MES-13. Consistently with in vivo results, cell proliferation was observed in MES-13 cells after exposure to 2,4,6-trihalophenols, especially to TBP and TIP. Meanwhile, TCP at high concentration, TBP and TIP at not only high concentration but also low concentration, induced BCAAs accumulation in glomerular mesangial cells, which was completely commensurate to that observed in cell proliferation assay. Then the proliferation of MES-13 cells induced by 2,4,6-trihalophenols was remarkably inhibited after BCAAs interference. Here we provide direct link between disturbed BCAAs and the nephrotoxicity of 2,4,6-trihalophenols. 2,4,6-trihalophenols could induce excess BCAAs, which further led to proliferation of glomerular mesangial cells and renal injury. This study revealed the nephrotoxicity of aromatic trihalogenated DBPs and provided new insights into the potential toxic mechanisms.
Collapse
Affiliation(s)
- Tingting Miao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Mingzhi Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Tianye Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Biomarkers of persistent renal vulnerability after acute kidney injury recovery. Sci Rep 2021; 11:21183. [PMID: 34707157 PMCID: PMC8551194 DOI: 10.1038/s41598-021-00710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
Acute kidney injury (AKI) is a risk factor for new AKI episodes, chronic kidney disease, cardiovascular events and death, as renal repair may be deficient and maladaptive, and activate proinflammatory and profibrotic signals. AKI and AKI recovery definitions are based on changes in plasma creatinine, a parameter mostly associated to glomerular filtration, but largely uncoupled from renal tissue damage. The evolution of structural and functional repair has been incompletely described. We thus aimed at identifying subclinical sequelae persisting after recovery from cisplatin-induced AKI in rats. Compared to controls, after plasma creatinine recovery, post-AKI kidneys showed histological alterations and attendant susceptibility to new AKI episodes. Tubular function (assessed by the furosemide stress test, FST) also remained affected. Lingering parenchymal and functional subclinical alterations were paralleled by tapering, but abnormally high levels of urinary albumin, transferrin, insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinases-2 (TIMP-2) and, especially, the [TIMP-2]*[IGFBP7] product. As subclinical surrogates of incomplete renal recovery, the FST and the urinary [TIMP-2]*[IGFBP7] product provide two potential diagnostic tools to monitor the sequelae and kidney vulnerability after the apparent recovery from AKI.
Collapse
|
5
|
Shihana F, Wong WKM, Joglekar MV, Mohamed F, Gawarammana IB, Isbister GK, Hardikar AA, Seth D, Buckley NA. Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Sci Rep 2021; 11:9165. [PMID: 33911095 PMCID: PMC8080685 DOI: 10.1038/s41598-021-87918-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs in biofluids are potential biomarkers for detecting kidney and other organ injuries. We profiled microRNAs in urine samples from patients with Russell's viper envenoming or acute self-poisoning following paraquat, glyphosate, or oxalic acid [with and without acute kidney injury (AKI)] and on healthy controls. Discovery analysis profiled for 754 microRNAs using TaqMan OpenArray qPCR with three patients per group (12 samples in each toxic agent). From these, 53 microRNAs were selected and validated in a larger cohort of patients (Russell's viper envenoming = 53, paraquat = 51, glyphosate = 51, oxalic acid = 40) and 27 healthy controls. Urinary microRNAs had significantly higher expression in patients poisoned/envenomed by different nephrotoxic agents in both discovery and validation cohorts. Seven microRNAs discriminated severe AKI patients from no AKI for all four nephrotoxic agents. Four microRNAs (miR-30a-3p, miR-30a-5p, miR-92a, and miR-204) had > 17 fold change (p < 0.0001) and receiver operator characteristics area-under-curve (ROC-AUC) > 0.72. Pathway analysis of target mRNAs of these differentially expressed microRNAs showed association with the regulation of different nephrotoxic signaling pathways. In conclusion, human urinary microRNAs could identify toxic AKI early after acute injury. These urinary microRNAs have potential clinical application as early non-invasive diagnostic AKI biomarkers.
Collapse
Affiliation(s)
- Fathima Shihana
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia.
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Fahim Mohamed
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Allied Health Sciences, Department of Pharmacy, University of Peradeniya, Peradeniya, Sri Lanka
- Australian Kidney Biomarker Reference Laboratory, Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia
| | - Indika B Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Devanshi Seth
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Clinical Medicine and Addiction Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nicholas A Buckley
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
- Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Shihana F, Mohamed F, Joglekar MV, Hardikar AA, Seth D, Buckley NA. Urinary versus serum microRNAs in human oxalic acid poisoning: Contrasting signals and performance. Toxicol Lett 2020; 334:21-26. [PMID: 32910981 DOI: 10.1016/j.toxlet.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022]
Abstract
MicroRNAs are key regulators of the normal kidney function and development, and altered in acute kidney injury (AKI). However, there is a lack of studies comparing serum and urine miRNA expression in toxic AKI in humans. We aimed to compare the global signature of urinary and serum microRNAs, with and without kidney injury, after human oxalic acid poisoning. We profiled urinary microRNAs in patients who ingested oxalic acid and developed no injury (No AKI n = 3), moderate injury (AKIN2 n = 3) or severe injury (AKIN3 n = 3) and healthy controls (n = 3). We validated a signature of 30 urinary microRNAs identified in the discovery profiling, in a second cohort of individuals exposed to oxalic acid (No AKI n = 15, AKIN2 n=11 & AKIN3 n= 18) and healthy controls (n=-27) and we compared the results with previously published serum data. Global profiling in toxic AKI patients showed a higher expression of urinary microRNAs and lower expression of serum microRNAs. Most urine microRNA in the validation cohort were significantly upregulated (25/30, fold change >2.8 and p < 0.05) in AKIN2/3 patients compared to No AKI. Four urinary microRNAs (miR-191, miR-19b, miR-20a and miR-30b) had good diagnostic performance (AUC greater than 0.8) to predict AKIN2/3 between 4-8 hours post ingestion. Poisoning irrespective of AKI led to significantly lower expression of many microRNAs in serum but relatively few changes in urinary miRNA expression. In conclusion, urinary microRNA signature provides a stronger measure of AKI in oxalic acid poisoning compared to serum microRNA. Kidney injury has the greatest impact on urinary microRNA, while poisoning itself was better reflected in serum miRNA. Plasma and urinary microRNAs signatures provide complementary information in toxic kidney injury.
Collapse
Affiliation(s)
- Fathima Shihana
- The University of Sydney, Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, NSW, Australia; University of Peradeniya, South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka.
| | - Fahim Mohamed
- The University of Sydney, Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, NSW, Australia; University of Peradeniya, South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka; University of Peradeniya, Faculty of Allied Health Sciences, Department of Pharmacy, Peradeniya, Sri Lanka
| | - Mugdha V Joglekar
- The University of Sydney, Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine & Health, NSW, Australia
| | - Anandwardhan A Hardikar
- The University of Sydney, Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine & Health, NSW, Australia.
| | - Devanshi Seth
- The University of Sydney, Discipline of Clinical Medicine & Addiction Medicine, Faculty of Medicine & Health, NSW, Australia; Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; The University of Sydney The Centenary Institute of Cancer Medicine & Cell Biology, NSW, Australia
| | - Nicholas A Buckley
- The University of Sydney, Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, NSW, Australia; University of Peradeniya, South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka
| |
Collapse
|
7
|
Wijerathna TM, Mohamed F, Gawarammana IB, Wunnapuk K, Dissanayake DM, Shihana F, Buckley NA. Cellular injury leading to oxidative stress in acute poisoning with potassium permanganate/oxalic acid, paraquat, and glyphosate surfactant herbicide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103510. [PMID: 33031936 DOI: 10.1016/j.etap.2020.103510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Previous studies on human acute kidney injury (AKI) following poisoning with potassium permanganate/oxalic acid (KMnO4/H2C2O4), paraquat, and glyphosate surfactant herbicide (GPSH) have shown rapid and large increases in serum creatinine (sCr) that cannot be entirely explained by direct nephrotoxicity. One plausible mechanism for a rapid increase in sCr is oxidative stress. Thus, we aimed to explore biomarkers of oxidative stress, cellular injury, and their relationship with sCr, after acute KMnO4/H2C2O4, paraquat, and GPSH poisonings. Serum biomarkers [sCr, creatine (sCn), cystatin C (sCysC)] and urinary biomarkers [cytochrome C (CytoC), 8-isoprostane (8-IsoPs)] were evaluated in 105 patients [H2C2O4/KMnO4 (N = 57), paraquat, (N = 21), GPSH (N = 27)] recruited to a multicenter cohort study. We used area under the receiver operating characteristics curve (AUC-ROC) to quantify the extent of prediction of moderate to severe AKI (acute kidney injury network stage 2/3 (AKIN2/3)). Patients with AKIN2/3 showed increased levels of CytoC. Early high CytoC predicted AKIN2/3 in poisoning with KMnO4/H2C2O4 (AUC-ROC4-8h: 0.81), paraquat (AUC-ROC4-8h: 1.00), and GPSH (AUC-ROC4-8h: 0.91). 8-Isoprostane levels were not significantly elevated. Reduced sCn and increased sCr/sCn ratios were observed for 48 h post KMnO4/H2C2O4 ingestion. Paraquat exhibited a similar pattern (N = 11), however only 3 were included in our study. Increased CytoC suggests there is mitochondrial injury coupled with energy depletion. The increased sCr within 24 h could be due to increased conversion of cellular creatine to creatinine during the process of adenosine triphosphate (ATP) generation and then efflux from cells. Later increases of sCr are more likely to represent a true decrease in kidney function.
Collapse
Affiliation(s)
- Thilini Madushanka Wijerathna
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Fahim Mohamed
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka; Australian Kidney Biomarker Reference Laboratory, Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia; The University of Sydney, Faculty of Medicine and Health, Discipline of Biomedical Informatics and Digital Health, Clinical Pharmacology and Toxicology Research Group, Sydney, 2006 NSW, Australia
| | - Indika Bandara Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Klintean Wunnapuk
- Toxicology Division, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Fathima Shihana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; The University of Sydney, Faculty of Medicine and Health, Discipline of Biomedical Informatics and Digital Health, Clinical Pharmacology and Toxicology Research Group, Sydney, 2006 NSW, Australia
| | - Nicholas Allan Buckley
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; The University of Sydney, Faculty of Medicine and Health, Discipline of Biomedical Informatics and Digital Health, Clinical Pharmacology and Toxicology Research Group, Sydney, 2006 NSW, Australia
| |
Collapse
|
8
|
Shihana F, Joglekar MV, Raubenheimer J, Hardikar AA, Buckley NA, Seth D. Circulating human microRNA biomarkers of oxalic acid-induced acute kidney injury. Arch Toxicol 2020; 94:1725-1737. [PMID: 32086547 DOI: 10.1007/s00204-020-02679-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Oxalic acid-induced nephrotoxicity and acute kidney injury result from formation of calcium oxalate crystals. Oxalic acid-induced acute kidney injury is a significant problem in many parts of the world. Circulating biomarkers that can accurately and reproducibly detect acute kidney injury are highly desirable. We used a high sensitivity discovery platform to identify signature microRNAs to distinguish healthy individuals never exposed to oxalic acid (n = 4) from those who were exposed to oxalic acid but had no injury (NOAKI; n = 4), moderate injury (AKIN2; n = 4) or severe injury (AKIN3; n = 4). Longitudinal analyses identified 4-8 h post-ingestion as the best time to detect AKIN2/3. We validated a signature of 53 microRNAs identified in the discovery, in a second cohort of individuals exposed to oxalic acid (NOAKI = 11, AKIN2 = 8 and AKIN3 = 18) and healthy controls (n = 19). Thirteen microRNAs were significantly downregulated in acute kidney injury patients compared to NOAKI within 8-h post-ingestion. Five microRNAs (miR-20a, miR-92a, miR-93, miR-195, miR-451) had a highly significant correlation with normalized urinary albumin, serum creatinine at 24 h and creatinine clearance. Logistic regression of these microRNAs had AUC-ROC of 0.85 predicting AKIN2/3 and discriminated patients from healthy controls (AUC-ROC = 0.93). mRNA targets of these microRNAs identified oxidative stress pathways of nephrotoxicity in proximal tubule and glomeruli nephrotoxicity. In conclusion, the downregulation of multiple circulating microRNAs in patients correlated with the severity of oxalic acid-induced acute kidney injury. A set of microRNAs (miR-20a, miR-92a, miR-93, miR-195, miR-451) could be promising biomarkers for early detection of oxalic acid-induced acute kidney injury.
Collapse
Affiliation(s)
- Fathima Shihana
- Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Level 3, 1-3 Ross St (K06), Sydney, NSW, 2006, Australia. .,South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jacques Raubenheimer
- Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Level 3, 1-3 Ross St (K06), Sydney, NSW, 2006, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas A Buckley
- Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Level 3, 1-3 Ross St (K06), Sydney, NSW, 2006, Australia.,South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Devanshi Seth
- Discipline of Clinical Medicine and Addiction Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,The Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Ratnayake I, Mohamed F, Buckley NA, Gawarammana IB, Dissanayake DM, Chathuranga U, Munasinghe M, Maduwage K, Jayamanne S, Endre ZH, Isbister GK. Early identification of acute kidney injury in Russell's viper (Daboia russelii) envenoming using renal biomarkers. PLoS Negl Trop Dis 2019; 13:e0007486. [PMID: 31260445 PMCID: PMC6625728 DOI: 10.1371/journal.pntd.0007486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/12/2019] [Accepted: 05/23/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a major complication of snake envenoming, but early diagnosis remains problematic. We aimed to investigate the time course of novel renal biomarkers in AKI following Russell's viper (Daboia russelii) bites. METHODOLOGY/PRINCIPAL FINDINGS We recruited a cohort of patients with definite Russell's viper envenoming and collected serial blood and urine samples on admission (<4h post-bite), 4-8h, 8-16h, 16-24h, 1 month and 3 months post-bite. AKI stage (1-3) was defined using the Acute Kidney Injury Network criteria. AKI stages (1-3) were defined by the Acute Kidney Injury Network (AKIN) criteria. There were 65 Russell's viper envenomings and 49 developed AKI: 24 AKIN stage 1, 13 stage 2 and 12 stage 3. There was a significant correlation between venom concentrations and AKI stage (p = 0.007), and between AKI stage and six peak biomarker concentrations. Although most biomarker concentrations were elevated within 8h, no biomarker performed well in diagnosing AKI <4h post-bite. Three biomarkers were superior to serum creatinine (sCr) in predicting AKI (stage 2/3) 4-8h post-bite: serum cystatin C (sCysC) with an area under the receiver operating curve (AUC-ROC), 0.78 (95%CI:0.64-0.93), urine neutrophil gelatinase-associated lipocalin (uNGAL), 0.74 (95%CI:0.59-0.87) and urine clusterin (uClu), 0.81 (95%CI:0.69-0.93). No biomarker was better than sCr after 8h. Six other urine biomarkers urine albumin, urine beta2-microglobulin, urine kidney injury molecule-1, urine cystatin C, urine trefoil factor-3 and urine osteopontin either had minimal elevation, and/or minimal prediction for AKI stage 2/3 (AUC-ROC<0.7). CONCLUSIONS/SIGNIFICANCE AKI was common and sometimes severe following Russell's viper bites. Three biomarkers uClu, uNGAL and sCysC, appeared to become abnormal in AKI earlier than sCr, and may be useful in early identification of envenoming.
Collapse
Affiliation(s)
- Indira Ratnayake
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Fahim Mohamed
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- TACT, Department of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
- Department of Pharmacy, Faculty of Allied Health Science, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia
| | - Nicholas A. Buckley
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- TACT, Department of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Indika B. Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Dhammika M. Dissanayake
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Umesh Chathuranga
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mahesh Munasinghe
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kalana Maduwage
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Shaluka Jayamanne
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Zoltan H. Endre
- Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia
| | - Geoffrey K. Isbister
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
10
|
Wijerathna TM, Gawarammana IB, Mohamed F, Dissanayaka DM, Dargan PI, Chathuranga U, Jayathilaka C, Buckley NA. Epidemiology, toxicokinetics and biomarkers after self-poisoning with Gloriosa superba. Clin Toxicol (Phila) 2019; 57:1080-1086. [DOI: 10.1080/15563650.2019.1581939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thilini Madushanka Wijerathna
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Indika Bandara Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Fahim Mohamed
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Pharmacy, Faculty of Allied Health Science, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia
- Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Paul I Dargan
- Clinical Toxicology, Guy’s and St Thomas’, NHS Foundation Trust and Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Umesh Chathuranga
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Chamila Jayathilaka
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nicholas Alan Buckley
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|