1
|
Thorne D, McHugh D, Simms L, Lee KM, Fujimoto H, Moses S, Gaca M. Applying new approach methodologies to assess next-generation tobacco and nicotine products. FRONTIERS IN TOXICOLOGY 2024; 6:1376118. [PMID: 38938663 PMCID: PMC11208635 DOI: 10.3389/ftox.2024.1376118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
In vitro toxicology research has accelerated with the use of in silico, computational approaches and human in vitro tissue systems, facilitating major improvements evaluating the safety and health risks of novel consumer products. Innovation in molecular and cellular biology has shifted testing paradigms, with less reliance on low-throughput animal data and greater use of medium- and high-throughput in vitro cellular screening approaches. These new approach methodologies (NAMs) are being implemented in other industry sectors for chemical testing, screening candidate drugs and prototype consumer products, driven by the need for reliable, human-relevant approaches. Routine toxicological methods are largely unchanged since development over 50 years ago, using high-doses and often employing in vivo testing. Several disadvantages are encountered conducting or extrapolating data from animal studies due to differences in metabolism or exposure. The last decade saw considerable advancement in the development of in vitro tools and capabilities, and the challenges of the next decade will be integrating these platforms into applied product testing and acceptance by regulatory bodies. Governmental and validation agencies have launched and applied frameworks and "roadmaps" to support agile validation and acceptance of NAMs. Next-generation tobacco and nicotine products (NGPs) have the potential to offer reduced risks to smokers compared to cigarettes. These include heated tobacco products (HTPs) that heat but do not burn tobacco; vapor products also termed electronic nicotine delivery systems (ENDS), that heat an e-liquid to produce an inhalable aerosol; oral smokeless tobacco products (e.g., Swedish-style snus) and tobacco-free oral nicotine pouches. With the increased availability of NGPs and the requirement of scientific studies to support regulatory approval, NAMs approaches can supplement the assessment of NGPs. This review explores how NAMs can be applied to assess NGPs, highlighting key considerations, including the use of appropriate in vitro model systems, deploying screening approaches for hazard identification, and the importance of test article characterization. The importance and opportunity for fit-for-purpose testing and method standardization are discussed, highlighting the value of industry and cross-industry collaborations. Supporting the development of methods that are accepted by regulatory bodies could lead to the implementation of NAMs for tobacco and nicotine NGP testing.
Collapse
Affiliation(s)
- David Thorne
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| | - Damian McHugh
- PMI R&D Philip Morris Products S. A., Neuchâtel, Switzerland
| | - Liam Simms
- Imperial Brands, Bristol, United Kingdom
| | - K. Monica Lee
- Altria Client Services LLC, Richmond, VA, United States
| | | | | | - Marianna Gaca
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| |
Collapse
|
2
|
Goodall S, Gale N, Thorne D, Hadley S, Prasad K, Gilmour I, Miazzi F, Proctor C. Evaluation of behavioural, chemical, toxicological and clinical studies of a tobacco heated product glo™ and the potential for bridging from a foundational dataset to new product iterations. Toxicol Rep 2022; 9:1426-1442. [PMID: 36561950 PMCID: PMC9764197 DOI: 10.1016/j.toxrep.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Background Tobacco Heating Products (THPs) are tobacco products that heat rather than burn tobacco with temperatures less than 350 °C. Because of this operating principle, they produce substantially fewer and lower levels of tobacco smoke toxicants than combustible cigarette smoke produced when tobacco is burnt, which occurs at much higher temperatures of around 900 °C. This paper analyses data on a THP, glo™, and assesses whether its use would result in reduced health risks compared to the health risks of smoking cigarettes. It also looks at the possibility of bridging datasets across the different variants of the glo™ product. Methods The approach is to consider whether datasets from behavioural, chemical, toxicological and clinical studies provide consistent findings of reductions in toxicant exposure with glo™ use by subjects who switch completely from smoking cigarettes to using glo™ and whether these reductions are similar to those who stop smoking cigarettes without switching to glo™ or any other tobacco or nicotine product. We also examine the similarities and differences of different versions of the glo™ product and benchmark it against a THP from another manufacturer. Results The studies indicate that the use of the glo™ results in substantial and prolonged reductions in toxicant exposure for smokers who switch to glo™ completely. A long-term clinical study shows substantial reductions in toxicant exposure over a period of time, similar to reduction of some biomarkers of exposure found following smoking cessation without switching to glo™ or any other tobacco product, and biomarkers of potential harm trending in a favourable manner for both groups that switch to glo™ and that quit all tobacco and nicotine use. Data suggests that all iterations of glo™ result in substantial reductions in toxicant exposure compared to smoking cigarettes and that bridging across datasets is feasible. Conclusions Given the accumulated scientific data summarised in this paper, and particularly the findings from a long-term clinical study, the data demonstrate that glo™ is a reduced exposure product compared to combustible cigarettes and is reasonably deemed to reduce the risk of smoking-related diseases and supports the conclusion that smokers who would have otherwise continued to smoke and instead switch entirely to THP glo™ use, will reduce their relative risk of developing smoking-related diseases as compared to continued smoking. The extent of reduction in risk compared to continuing to smoke is likely to vary by smoking-related disease and by an individuals' smoking history, other risk factors and an individual's susceptibility to disease. Use of the THP will present some level of increased health risk as compared to cessation of tobacco and nicotine products and will cause dependence. As long as the principles of heat-not-burn are maintained, THP use will result in substantially reduced exposure to smoke toxicants as compared to continued conventional cigarette smoking. It is possible to use bridging or read across to apply these conclusions to new iterations of the glo™ product, extending the utility and validity of the evidence generated through study of prior iterations.
Collapse
|
3
|
McEwan M, Gale N, Ebajemito JK, Camacho OM, Hardie G, Proctor CJ, Murphy J. A randomized controlled study in healthy participants to explore the exposure continuum when smokers switch to a tobacco heating product or an E-cigarette relative to cessation. Toxicol Rep 2021; 8:994-1001. [PMID: 34026564 PMCID: PMC8131274 DOI: 10.1016/j.toxrep.2021.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Cigarette smoking is associated with a number of diseases, such as cancer and cardiovascular diseases. Recently, there has been an increase in the use of electronic cigarettes (ECs) and tobacco-heating products (THPs) as an alternative to cigarettes, which may reduce the health burden associated with smoking. However, an exposure continuum when smokers switch to ECs or THPs compared to complete smoking cessation is not well established. Methods 148 healthy smokers were randomized to either continue smoking cigarettes, switch to using the glo THP or a prototype EC, or completely quit any nicotine or tobacco product use for 5 days, after a 2-day baseline period. During this study breath and 24-h urine samples were collected for Biomarker of Exposure (BoE) analysis. Results After a 5-day switching period BoE levels showed a substantial significant decrease in levels from baseline in the groups using the glo THP, the prototype EC, and having quit all nicotine and tobacco use. On an exposure continuum, smokers who completely quit nicotine had the lowest levels of assessed BoEs, followed by those who switched to the EC and then those who switched to glo THP use. Participants who continued to smoke had the highest levels of BoEs. Conclusions THP or EC use over a 5-day period resulted in significant reductions in exposure to smoke toxicants, in some cases to levels similar to those for nicotine cessation. These results show that on an exposure continuum, nicotine cessation gives the greatest reduction in exposure to tobacco smoke toxicants, closely followed by the EC and the glo THP. These significant reductions in exposure to toxicants suggest that the glo THP and EC have the potential to be Reduced Risk Products. Study Registration ISRCTN80651909.
Collapse
Affiliation(s)
- Michael McEwan
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Nathan Gale
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - James K Ebajemito
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - George Hardie
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | | | - James Murphy
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| |
Collapse
|
4
|
Dusautoir R, Zarcone G, Verriele M, Garçon G, Fronval I, Beauval N, Allorge D, Riffault V, Locoge N, Lo-Guidice JM, Anthérieu S. Comparison of the chemical composition of aerosols from heated tobacco products, electronic cigarettes and tobacco cigarettes and their toxic impacts on the human bronchial epithelial BEAS-2B cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123417. [PMID: 32763707 DOI: 10.1016/j.jhazmat.2020.123417] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The electronic cigarettes (e-cigs) and more recently the heated tobacco products (HTP) provide alternatives for smokers as they are generally perceived to be less harmful than conventional cigarettes. However, it is crucial to compare the health risks of these different emergent devices, in order to determine which product should be preferred to substitute cigarette. The present study aimed to compare the composition of emissions from HTP, e-cigs and conventional cigarettes, regarding selected harmful or potentially harmful compounds, and their toxic impacts on the human bronchial epithelial BEAS-2B cells. The HTP emitted less polycyclic aromatic hydrocarbons and carbonyls than the conventional cigarette. However, amounts of these compounds in HTP aerosols were still higher than in e-cig vapours. Concordantly, HTP aerosol showed reduced cytotoxicity compared to cigarette smoke but higher than e-cig vapours. HTP and e-cig had the potential to increase oxidative stress and inflammatory response, in a manner similar to that of cigarette smoke, but after more intensive exposures. In addition, increasing e-cig power impacted levels of certain toxic compounds and related oxidative stress. This study provides important data necessary for risk assessment by demonstrating that HTP might be less harmful than tobacco cigarette but considerably more harmful than e-cig.
Collapse
Affiliation(s)
- Romain Dusautoir
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Marie Verriele
- IMT Lille Douai, Univ. Lille, SAGE, F-59000, Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | | | - Nicolas Beauval
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Delphine Allorge
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | | | - Nadine Locoge
- IMT Lille Douai, Univ. Lille, SAGE, F-59000, Lille, France.
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France.
| |
Collapse
|
5
|
Taylor M, Santopietro S, Baxter A, East N, Breheny D, Thorne D, Gaça M. In vitro biological assessment of the stability of cigarette smoke aqueous aerosol extracts. BMC Res Notes 2020; 13:492. [PMID: 33087173 PMCID: PMC7579917 DOI: 10.1186/s13104-020-05337-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Cigarette smoke aqueous aerosol extracts (AqE) have been used for assessing tobacco products, particularly with in vitro models such as oxidative stress and inflammation. These test articles can be generated easily, but there are no standardised methods for the generation and characterisation or stability. We investigated the effects of pro-oxidant smoke-derived chemicals by using 3R4F AqE generated under standardised conditioning and smoking regimes and assessed the stability over 31-week timeframe. Twenty batches generated from ten puffs per cigarette bubbled through 20 ml cell culture media were used fresh and thawed from frozen aliquots stored at - 80 ºC. RESULTS Nicotine levels quantified by gas chromatography/mass spectrometry and optical density at 260 nm showed chemical and physical stability from week 0 (fresh sample) to weeks 1, 4, 8 and 31 (frozen samples). No significant change in H292 human bronchial epithelial cell viability or oxidative stress were observed between fresh AqE at week 0 and frozen AqE at 31 weeks. AqEs generated by our protocol were stable for up to 31 weeks for all tested end points, suggesting that it may not be necessary to use freshly generated AqE for each study, thus reducing batch-to-batch variability.
Collapse
Affiliation(s)
- Mark Taylor
- British American Tobacco, R&D, Southampton, SO15 8TL, Hampshire, UK
| | | | - Andrew Baxter
- British American Tobacco, R&D, Southampton, SO15 8TL, Hampshire, UK
| | - Nicole East
- British American Tobacco, R&D, Southampton, SO15 8TL, Hampshire, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, SO15 8TL, Hampshire, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, SO15 8TL, Hampshire, UK
| | - Marianna Gaça
- British American Tobacco, R&D, Southampton, SO15 8TL, Hampshire, UK
| |
Collapse
|
6
|
Bozhilova S, Baxter A, Bishop E, Breheny D, Thorne D, Hodges P, Gaça M. Optimization of aqueous aerosol extract (AqE) generation from e-cigarettes and tobacco heating products for in vitro cytotoxicity testing. Toxicol Lett 2020; 335:51-63. [PMID: 33091563 DOI: 10.1016/j.toxlet.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Electronic cigarettes (e-cigarettes) and tobacco heating products (THPs) have reduced yields of toxicants and have recently emerged as a potentially safer alternative to combustible cigarettes. To understand if reduced toxicant exposure is associated with reductions in biological responses, there is a need for high-quality pre-clinical in vitro studies. Here, we investigated the cytotoxic response of human umbilical vein endothelial cells to conventional cigarette aqueous aerosol extracts (AqE) and highly concentrated AqEs from e-cigarettes (two generations of atomisers) and THPs (two variants). All AqE samples were generated by a standardized methodology and characterized for nicotine, propylene glycol and vegetable glycerol. The cigarette AqE caused a maximum 100 ± 0.00 % reduction in cell viability at 35 % dose (2.80 puffs) as opposed to 96.63 ± 2.73 % at 50 % (20 puffs) and 99.85 ± 0.23 % at 75 % (30 puffs) for the two THP variants (glo Bright Tobacco, glo Rich Tobacco), and 99.07 ± 1.61 % at the neat ePen2.0 e-cigarette (200 puffs). The AqE of the remaining e-cigarettes either resulted in an incomplete dose-response or did not elicit any response. The methods utilized were suitably sensitive to not only differentiate between cigarette, THP and e-cigarette aerosols but also to distinguish between products within each product category.
Collapse
Affiliation(s)
- Stela Bozhilova
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Emma Bishop
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Paul Hodges
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna Gaça
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
7
|
Smart DJ, Phillips G. Collecting e-cigarette aerosols for in vitro applications: A survey of the biomedical literature and opportunities to increase the value of submerged cell culture-based assessments. J Appl Toxicol 2020; 41:161-174. [PMID: 33015847 PMCID: PMC7756347 DOI: 10.1002/jat.4064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Electronic nicotine delivery systems (ENDS) are being developed as potentially reduced‐risk alternatives to the continued use of combustible tobacco products. Because of the widespread uptake of ENDS—in particular, e‐cigarettes—the biological effects, including the toxic potential, of their aerosols are under investigation. Preclinically, collection of such aerosols is a prerequisite for testing in submerged cell culture‐based in vitro assays; however, despite the growth in this research area, there is no apparent standardized collection method for this application. To this end, through an Institute for in vitro Sciences, Inc. workshop initiative, we surveyed the biomedical literature catalogued in PubMed® to map the types of methods hitherto used and reported publicly. From the 47 relevant publications retrieved, we identified seven distinct collection methods. Bubble‐through (with aqueous solvents) and Cambridge filter pad (CFP) (with polar solvents) collection were the most frequently cited methods (57% and 18%, respectively), while the five others (CFP + bubble‐through; condensation; cotton filters; settle‐upon; settle‐upon + dry) were cited less often (2–10%). Critically, the collected aerosol fractions were generally found to be only minimally characterized chemically, if at all. Furthermore, there was large heterogeneity among other experimental parameters (e.g., vaping regimen). Consequently, we recommend that more comprehensive research be conducted to identify the method(s) that produce the fraction(s) most representative of the native aerosol. We also endorse standardization of the aerosol generation process. These should be regarded as opportunities for increasing the value of in vitro assessments in relation to predicting effects on human health. Collection of e‐cigarette aerosols is a prerequisite to enable testing in submerged culture‐based in vitro assays; however, there is no standardized method for this. Thus, we surveyed the biomedical literature to map the types of published methods. Bubble‐through and Cambridge filter pad methods were most common, although there was heterogeneity among other parameters, and moreover, the resulting fractions were only minimally characterized. Comprehensive research is required to identify the method(s) that produce the fraction(s) most representative of the native aerosol.
Collapse
Affiliation(s)
- Daniel J Smart
- PMI R&D, Philip Morris Products SA, Neuchâtel, Switzerland
| | | |
Collapse
|
8
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
9
|
Ratajczak A, Jankowski P, Strus P, Feleszko W. Heat Not Burn Tobacco Product-A New Global Trend: Impact of Heat-Not-Burn Tobacco Products on Public Health, a Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020409. [PMID: 31936252 PMCID: PMC7014072 DOI: 10.3390/ijerph17020409] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/04/2022]
Abstract
Introduction: The use of heat-not-burn tobacco products (HnB) is being adopted increasingly as an alternative to smoking combusted products, primarily cigarettes. Substantial controversy has accompanied their marketing and use in the public health context. In this study, we aimed to consider the probable impacts of HnB tobacco products use on public health. Methods: In May 2019, we conducted a systematic review of 15 studies concerning awareness and use of IQOS (abbrv. I Quit Ordinary Smoking) selected from three databases: Cochrane, PubMed, and Embase regarding public health. Results: All key outcomes varied by smoking status: more young adults who were currently smoking reported being aware of, interested in trying, and prone to trying heat-not-burn tobacco products. Interest in trying HnB products was also present among non-smokers, which raises concerns regarding new smokers. Interestingly, susceptibility to trying IQOS (25.1%) was higher than for traditional cigarettes (19.3%), but lower than for e-cigarettes (29.1%). Conclusions: Present studies suggest that HnB tobacco products have the potential to be a reduced risk product for public health compared to conventional cigarettes, considering indirectly the potential effects on the chronic diseases which are traditionally linked to traditional cigarette use as well as second hand exposure, but further studies are needed to determine whether this potential is likely to be realized. The process of HnB tobacco products becoming increasingly popular is of a global scale. Only small differences between countries on different continents regarding popularity and use of HnB tobacco products have been reported.
Collapse
Affiliation(s)
- Aleksandra Ratajczak
- Department of Pediatric Respiratory Diseases and Allergy, Medical University of Warsaw, Żwirki i Wigury 63A, PL-02-091 Warsaw, Poland; (A.R.); (P.S.)
| | - Piotr Jankowski
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, PL-02-091 Warsaw, Poland;
| | - Piotr Strus
- Department of Pediatric Respiratory Diseases and Allergy, Medical University of Warsaw, Żwirki i Wigury 63A, PL-02-091 Warsaw, Poland; (A.R.); (P.S.)
| | - Wojciech Feleszko
- Department of Pediatric Respiratory Diseases and Allergy, Medical University of Warsaw, Żwirki i Wigury 63A, PL-02-091 Warsaw, Poland; (A.R.); (P.S.)
- Correspondence: ; Tel.: +48-223-199-417
| |
Collapse
|