1
|
An F, Liu J, Lu W, Jareemit D. Comparison of exposure to traffic-related pollutants on different commuting routes to a primary school in Jinan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43319-43340. [PMID: 35091940 PMCID: PMC8799450 DOI: 10.1007/s11356-021-18362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Traffic-related pollutants seriously affect human health, and the commute time to and from school is the time when students are exposed greatest to traffic pollution sources. Field measurements were conducted with hand-held instruments while walking along two selected commuting routes in winter and spring. The measured data were then compared with background monitoring data, and the respiratory deposition dose (RDD) was calculated to assess the exposure risk. Particulate matter intake from 2018 to 2020 was calculated. In winter, the average concentrations of PM2.5 and PM10 were higher in the afternoon than in the morning. The highest concentration was 2.94 times greater than the background value. The low-concentration distribution area of the low-traffic route that is off the main road (route B) was more significant than that of the high-traffic route that is near the main road (route A). Moreover, the RDD of route B was consistently lower than that of route A, while the average annual amount of PM2.5 inhalation on route B in 3 years was 16.3% lower than that on route A. Overall, route B is more suitable than route A for students to commute on foot. Based on the findings, a walking route located within a community is a good choice.
Collapse
Affiliation(s)
- Farun An
- School of Thermal Engineering, Shandong Jianzhu University, #1000 Fengming Road, Jinan, 250101, China
| | - Jiying Liu
- School of Thermal Engineering, Shandong Jianzhu University, #1000 Fengming Road, Jinan, 250101, China.
- Shandong GRAD Group, Built Environment Design and Research Institute, Dezhou, 253000, China.
| | - Wanpeng Lu
- School of Thermal Engineering, Shandong Jianzhu University, #1000 Fengming Road, Jinan, 250101, China
| | - Daranee Jareemit
- Faculty of Architecture and Planning, Thammasat University (Rangsit Campus), Khlong Nueng, 12121, Pathum Thani, Thailand
| |
Collapse
|
2
|
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Zhou JP, Zhang L, Shen JM, Li QY. Surfaxin attenuates PM2.5-induced airway inflammation via restoring surfactant proteins in rats exposed to cigarette smoke. ENVIRONMENTAL RESEARCH 2022; 203:111864. [PMID: 34389351 DOI: 10.1016/j.envres.2021.111864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Epidemiologic studies have shown that the fine particulate matter 2.5 (PM2.5) exaggerates chronic airway inflammation involving in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Surfactant proteins (SPs) decreases significantly related to airflow limitation and airway inflammation. However, how to restore the reduction of SPs levels in airway inflammation exposed to PM2.5 has not been well understood. In the present study, the SPs including SPA, SPB, SPC and SPD levels in bronchoalveolar lavage fluid (BALF) were detected from patients with stable COPD. Rats were exposed to cigarette smoke and PM2.5. After given with Surfaxin, the expression of SPs, protein kinase C (PKC) and tight junction protein (ZO-1) in lung tissue and the levels of C-reactive protein (CRP) and fibrinogen (FIB) in plasma was observed. The results showed that SPA, SPB and SPD were significantly lower than those of the control group (p < 0.01). PM2.5 aggravated smoking-induced airway inflammation and oxidative stress demonstrated by pathological changes of lung tissue and increased levels of CRP and PKC in vivo. PM2.5 decreased the expression of all the SPs and ZO-1, which could be significantly restored by Surfaxin. These findings indicate that Surfaxin protects the alveolar epithelium from PM2.5 in airway inflammation through increasing SPs.
Collapse
Affiliation(s)
- Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Min Shen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Huang Q, Chen G, Xu C, Jiang W, Su M. Spatial Variation of the Effect of Multidimensional Urbanization on PM 2.5 Concentration in the Beijing-Tianjin-Hebei (BTH) Urban Agglomeration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212077. [PMID: 34831832 PMCID: PMC8624147 DOI: 10.3390/ijerph182212077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022]
Abstract
Atmospheric PM2.5 pollution has become a prominent environmental problem in China, posing considerable threat to sustainable development. The primary driver of PM2.5 pollution in China is urbanization, and its relationship with PM2.5 concentration has attracted considerable recent academic interest. However, the spatial heterogeneity of the effect of urbanization on PM2.5 concentration has not been fully explored. This study sought to fill this knowledge gap by focusing on the Beijing–Tianjin–Hebei (BTH) urban agglomeration. Urbanization was decomposed into economic urbanization, population urbanization, and land urbanization, and four corresponding indicators were selected. A geographically weighted regression model revealed that the impact of multidimensional urbanization on PM2.5 concentration varies significantly. Economically, urbanization is correlated positively and negatively with PM2.5 concentration in northern and southern areas, respectively. Population size showed a positive correlation with PM2.5 concentration in northwestern and northeastern areas. A negative correlation was found between urban land size and PM2.5 concentration from central to southern regions. Urban compactness is the dominant influencing factor that is correlated positively with PM2.5 concentration in a major part of the BTH urban agglomeration. On the basis of these findings, BTH counties were categorized with regard to local policy recommendations intended to reduce PM2.5 concentrations.
Collapse
Affiliation(s)
- Qianyuan Huang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; (Q.H.); (G.C.); (W.J.)
- School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
| | - Guangdong Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; (Q.H.); (G.C.); (W.J.)
| | - Chao Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; (Q.H.); (G.C.); (W.J.)
- Correspondence: (C.X.); (M.S.)
| | - Weiyu Jiang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; (Q.H.); (G.C.); (W.J.)
| | - Meirong Su
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; (Q.H.); (G.C.); (W.J.)
- Correspondence: (C.X.); (M.S.)
| |
Collapse
|
4
|
Qin F, Fan Z, Xu M, Wang Z, Dong Y, Qu C, Cui S, Zhao L, Zhao J. Amelioration of Ambient Particulate Matter (PM 2.5)-Induced Lung Injury in Rats by Aerobic Exercise Training. Front Physiol 2021; 12:731594. [PMID: 34764879 PMCID: PMC8576392 DOI: 10.3389/fphys.2021.731594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ambient particulate matter (PM2.5), as an inflammation-inducing factor, increases the prevalence of lung injury. The aim of this study was to examine the protective effect and mechanism of aerobic exercise on PM2.5 exposure-induced lung injury. Forty Wistar rats were randomly divided into four groups: sedentary+PM2.5 exposure, exercise+PM2.5 exposure, sedentary, and exercise groups. All rats in the exercise-related groups underwent 8-week aerobic interval treadmill training (5daysweek−1, 1hday−1). PM-exposed rats were exposed to ambient PM2.5 (6h day−1) for 3weeks after the 8-week exercise intervention. Then, ventilation function, histopathological changes, and inflammation responses of pulmonary tissue were examined. Results showed that PM2.5 exposure induced lung injury as manifested by decreased pulmonary function, abnormal histopathological changes, and increased pro-inflammatory cytokine levels (tumor necrosis factor-α and Interleukin-1α). Aerobic exercise alleviated the airway obstruction, reduced respiratory muscle strength, bronchial mucosal exfoliation, ultrastructure damage, and inflammatory responses induced by PM2.5 in exercise-related groups. The benefits of exercise were related with the downregulation of p38-mitogen-activated protein kinase (MAPK), and the subsequent inhibition of the pathways of the cyclooxygenase 2 (COX-2) product, prostaglandin E2 (PGE2). Thus, pre-exercise training may be an effective way to protect against PM2.5-induced lung inflammatory injury in rats.
Collapse
Affiliation(s)
- Fei Qin
- Sport Biological Center, China Institute of Sport Science, Beijing, China.,School of Physical Education, Jinan University, Guangzhou, China
| | - Zhengzheng Fan
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Minxiao Xu
- Sport Biological Center, China Institute of Sport Science, Beijing, China.,Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, China
| | - Zhongwei Wang
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Yanan Dong
- Athletic Sports Research Lab, Beijing Institute of Sports Science, Beijing, China
| | - Chaoyi Qu
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Shuqiang Cui
- Athletic Sports Research Lab, Beijing Institute of Sports Science, Beijing, China
| | - Lina Zhao
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Jiexiu Zhao
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
5
|
Zhang L, Ou C, Magana-Arachchi D, Vithanage M, Vanka KS, Palanisami T, Masakorala K, Wijesekara H, Yan Y, Bolan N, Kirkham MB. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11055. [PMID: 34769574 PMCID: PMC8582694 DOI: 10.3390/ijerph182111055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
- School of Health, Jiangsu Food & Pharmaceutical Science College, Huai’an 223003, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
| | - Dhammika Magana-Arachchi
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
| | - Meththika Vithanage
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kanth Swaroop Vanka
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara 80000, Sri Lanka;
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka;
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
6
|
Wang Z, Xu M, Wang Y, Wang T, Wu N, Zheng W, Duan H. Air particulate matter pollution and circulating surfactant protein: A systemic review and meta-analysis. CHEMOSPHERE 2021; 272:129564. [PMID: 33476792 DOI: 10.1016/j.chemosphere.2021.129564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Air particulate matter (PM) pollution is associated with the alterations in circulating pulmonary damage proteins. But there are not consistent results among the epidemiological studies. The aim of this study is to investigate the alteration of surfactant protein (SP) from PM exposure. METHODS We conducted a comprehensive meta-analysis by searching the databases of PubMed, Medline, EMBASE, Web of Science and CNKI before October 2020 which reported PM pollutants and surfactant protein in the population. The sources of heterogeneity were assessed by subgroup (smoking, particulate matter with different aerodynamic diameter, exposure duration) analysis. We also used the publication bias tests for the comprehensive assessment. RESULTS This meta-analysis consisted of 10 studies with 1985 subjects. The results showed that the combined standardized mean difference (SMD) value was 0.05, 95% confidence interval (CI) was -0.07 to 0.17 for serum SP-A and -0.81 (95% CI: -1.41 to -0.21) for circulating SP-D. Among smokers, the combined SMD value of SP-A were 0.29 (95% CI: 0.05 to 0.52). We did not find the correlation between publication year of SP-A and SP-D and study heterogeneity. CONCLUSIONS Circulating SP-D was significantly decreased by air particulate matter. Serum SP-A was significantly increased by PM exposure among smokers. Circulating surfactant protein may be considered as a biomarker for respiratory injury caused by air particulate matter.
Collapse
Affiliation(s)
- Zhenjie Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengmeng Xu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nan Wu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjing Zheng
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Liu J, Chen Y, Zhang F, Peng X, Mao X, Lu W, Wu R, Huang B, Bao Y, Ma L, Huang Y, Zhang X. Divergent Roles of miR-3162-3p in Pulmonary Inflammation in Normal and Asthmatic Mice as well as Antagonism of miR-3162-3p in Asthma Treatment. Int Arch Allergy Immunol 2020; 181:594-605. [PMID: 32610326 DOI: 10.1159/000507250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miRNA) mimics or antagomirs hold great promise for asthma treatment compared with glucocorticoids as mainstay therapy for asthma. But the role of miRNA in regulating asthmatic inflammation is largely unclear. We previously reported that miR-3162-3p in the peripheral blood of children with asthma was obviously upregulated compared to that in healthy children. This study aimed to elucidate the role of miR-3162-3p in pulmonary inflammation in normal and asthmatic mice as well as preliminarily explore the potential of miR-3162-3p antagomir in asthma treatment. A noninvasive whole-body plethysmograph measured airway responsiveness. Both qRT-PCR and Western blot were used to detect the expression of miRNA, mRNA, or protein. Cells in bronchoalveolar lavage fluid were counted by platelet counting and Wright's staining. Inflammatory infiltration and mucus secretion were identified by hematoxylin and eosin and periodic acid-Schiff staining, respectively. Cytokines in the lungs were detected by ELISA. The miR-3162-3p mimic intraperitoneally administered to normal mice decreased β-catenin levels in the lungs without obviously altering the lung histology and cytokine levels. Antagonizing miR-3162-3p in ovalbumin-induced asthmatic mice effectively alleviated the typical features of asthma, such as airway hyper-responsiveness, airway inflammation, and Th1/Th2 cytokine imbalance, and concomitantly rescued the total and active β-catenin expression. Collectively, we discovered divergent roles of miR-3162-3p in lung inflammation between normal and asthmatic mice. The anti-inflammatory effects of the miR-3162-3p antagomir were comparable to those of glucocorticoid treatment. Our study helped in understanding the contribution of miRNAs to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Juman Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yinhui Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Zhang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xi Peng
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoning Mao
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Weihong Lu
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical College, Weihui, China
| | - Ruijian Wu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Binglong Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Lian Ma
- Department of Hematology and Oncology, and Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China,
| | - Xingliang Zhang
- Department of Hematology and Oncology, and Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
- Department of Pediatric Surgery, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|