1
|
Hossen S, Hanif MA, Cho Y, Kho KH. Molecular and structural analyses of voltage-dependent anion channel 2 and its anti-apoptotic function in stress and pollutant resistance in Pacific abalone. Int J Biol Macromol 2024; 282:137234. [PMID: 39491697 DOI: 10.1016/j.ijbiomac.2024.137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
This study aimed to identify voltage-dependent anion channel 2 (Hdh-VDAC2) and determine its functional role in response to acute thermal stress, H2O2-induced stress, heavy metal toxicity, bacterial and viral infections, and during metamorphosis. Structural analysis confirmed that Hdh-VDAC2 is a pore-forming β-barrel protein. Molecular docking further confirmed the protein-protein interactions of Hdh-VDAC2 with Hdh-BAX, Hdh-caspase 3, and Hdh-BCL2. In the Hdh-VDAC2-inhibited hemocytes (HCY), apoptotic genes (Hdh-caspase-3 and Hdh-BAX) exhibited elevated mRNA expression, while the anti-apoptotic gene (Hdh-BCL2) was downregulated. Further, fluorescent techniques confirmed excessive reactive oxygen species (ROS) production, lower cell viability, elevated caspase 3 activity, and increased DNA fragmentation in Hdh-VDAC2-inhibited HCY, indicating an anti-apoptotic role of Hdh-VDAC2 in Pacific abalone. Transcriptomic analysis revealed differential expression patterns, with upregulation in the digestive gland (DG) and downregulation in the gill (GIL) and HCY when comparing heat-tolerant (HT) versus heat-sensitive (HS) abalone groups. Additionally, both cold and heat stresses induced Hdh-VDAC2 expression. Other environmental factors including H2O2, cadmium, bacteria, and viruses, were also shown to induce Hdh-VDAC2 mRNA expression in the GIL and DG of Pacific abalone. During metamorphosis, the blastula (BLS) stage exhibited higher Hdh-VDAC2 mRNA expression. These findings suggest that Hdh-VDAC2 plays a crucial anti-apoptotic role and may be a biomarker for summer mortality in Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea.
| |
Collapse
|
2
|
Conti Nibali S, Battiato G, Pappalardo XG, De Pinto V. Voltage-Dependent Anion Channels in Male Reproductive Cells: Players in Healthy Fertility? Biomolecules 2024; 14:1290. [PMID: 39456223 PMCID: PMC11506323 DOI: 10.3390/biom14101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Male infertility affects nearly 50% of infertile couples, with various underlying causes, including endocrine disorders, testicular defects, and environmental factors. Spermatozoa rely on mitochondrial oxidative metabolism for motility and fertilization, with mitochondria playing a crucial role in sperm energy production, calcium regulation, and redox balance. Voltage-dependent anion channels (VDACs), located on the outer mitochondrial membrane, regulate energy and metabolite exchange, which are essential for sperm function. This review offers an updated analysis of VDACs in the male reproductive system, summarizing recent advances in understanding their expression patterns, molecular functions, and regulatory mechanisms. Although VDACs have been widely studied in other tissues, their specific roles in male reproductive physiology still remain underexplored. Special attention is given to the involvement of VDAC2/3 isoforms, which may influence mitochondrial function in sperm cells and could be implicated in male fertility disorders. This update provides a comprehensive framework for future research in reproductive biology, underscoring the significance of VDACs as a molecular link between mitochondrial function and male fertility.
Collapse
Affiliation(s)
| | | | | | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (S.C.N.); (G.B.); (X.G.P.)
| |
Collapse
|
3
|
Dou H, Yu PY, Liu YQ, Zhu Y, Li FC, Wang YY, Chen XY, Xiao M. Recent advances in caspase-3, breast cancer, and traditional Chinese medicine: a review. J Chemother 2024; 36:370-388. [PMID: 37936479 DOI: 10.1080/1120009x.2023.2278014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
Caspases (cysteinyl aspartate-specific proteinases) are a group of structurally similar proteases in the cytoplasm that can be involved in cell differentiation, programmed death, proliferation, and inflammatory generation. Experts have found that caspase-3 can serve as a terminal splicing enzyme in apoptosis and participate in the mechanism by which cytotoxic drugs kill cancer cells. Breast cancer (BC) has become the most common cancer among women worldwide, posing a severe threat to their lives. Finding new therapeutic targets for BC is the primary task of contemporary physicians. Numerous studies have revealed the close association between caspase-3 expression and BC. Caspase-3 is essential in BC's occurrence, invasion, and metastasis. In addition, Caspase-3 exerts anticancer effects by regulating cell death mechanisms. Traditional Chinese medicine acting through caspase-3 expression is increasingly used in clinical treatment. This review summarizes the biological mechanism of caspase-3 and research progress on BC. It introduces a variety of traditional Chinese medicine related to caspase-3 to provide new ideas for the clinical treatment of BC.
Collapse
Affiliation(s)
- He Dou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Ping Yang Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Yu Qi Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Yue Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Fu Cheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - You Yu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Xing Yan Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| |
Collapse
|
4
|
Garriga F, Martínez-Hernández J, Gener-Velasco N, Rodríguez-Gil JE, Yeste M. Voltage-dependent anion channels are involved in the maintenance of pig sperm quality during liquid preservation. Theriogenology 2024; 224:26-33. [PMID: 38723471 DOI: 10.1016/j.theriogenology.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Pigs are usually bred through artificial insemination with liquid semen preserved at 15-20 °C. While this method of preservation brings many benefits, including a greater reproductive performance compared to frozen-thawed sperm, the period of storage is a limiting factor. As the mitochondrion regulates many facets of sperm physiology, modulating its activity could have an impact on their lifespan. Aligned with this hypothesis, the present study sought to investigate whether inhibition of voltage-dependent anion channels (VDACs), which reside in the outer mitochondrial membrane and regulate the flux of ions between mitochondria and the cytosol in somatic cells, influences the resilience of pig sperm to liquid preservation at 17 °C. For this purpose, semen samples (N = 7) were treated with two different concentrations of TRO19622 (5 μM and 50 μM), an inhibitor of VDACs, and stored at 17 °C for 10 days. At days 0, 4 and 10, sperm quality and functionality parameters were evaluated by flow cytometry and computer-assisted sperm analysis (CASA). The effects of inhibiting VDACs depended on the concentration of the inhibitor. On the one hand, the greatest concentration of TRO19622 (50 μM) led to a decrease in sperm motility, viability and mitochondrial membrane potential, which could be related to the observed intracellular Ca2+ increase. In contrast, total sperm motility was higher in samples treated with 5 μM TRO19622 than in the control, suggesting that when VDACs channels are inhibited by the lowest concentration of the blocking agent the resilience of pig sperm to liquid storage increases. In conclusion, the current research indicates that mitochondrial function, as regulated by ion channels in the outer mitochondrial membrane like VDACs, is related to the sperm resilience to liquid preservation and may influence cell lifespan.
Collapse
Affiliation(s)
- Ferran Garriga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Jesús Martínez-Hernández
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain; Department of Cell Biology and Histology, Faculty of Medicine, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, ES-30120 Murcia, Spain
| | - Núria Gener-Velasco
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193, Cerdanyola Del Vallès, Barcelona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010, Barcelona, Spain.
| |
Collapse
|
5
|
Zhou J, Zhang Y, Zeng L, Wang X, Xiang W, Su P. Cadmium exposure induces pyroptosis of TM4 cells through oxidative stress damage and inflammasome activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115930. [PMID: 38184979 DOI: 10.1016/j.ecoenv.2024.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cadmium (Cd) is a harmful metal that seriously affects the male reproductive system, but the mechanism of how Cd exposure damages Sertoli cells is not fully understood. This study used TM4 cells to explore the mechanism of Cd damage to Sertoli cells. We found that Cd was concentration- and time-dependent on TM4 cell viability. Cd exposure increased intracellular reactive oxygen species (ROS) levels, lactate dehydrogenase (LDH), and Interleukin-1β (IL-1β) release in TM4 cells, decreased mitochondrial function, and increased pyroptosis. N-acetylcysteine (NAC), MCC950 and BAY 11-7082 (BAY) alleviate the release of IL-1β and LDH induced by Cd. NAC reduced Cd induced increases in ROS, NLRP3, Caspase-1, Heme oxygenase-1(HO-1), superoxide dismutase (SOD2), and increased mitochondrial function. The activation of GSDMD is the main causes of pyroptosis, and NAC significantly inhibit its activation and formation. Our results suggest that Cd exposure induces a toxic mechanism of GSDMD-mediated pyroptosis in TM4 cells by increasing ROS levels and activating the inflammasome.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaofei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan HuaKe Reproductive Hospital, Wuhan, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan HuaKe Reproductive Hospital, Wuhan, China.
| |
Collapse
|
6
|
Fang S, Li Z, Pang S, Gan Y, Ding X, Peng H. Identification of postnatal development dependent genes and proteins in porcine epididymis. BMC Genomics 2023; 24:729. [PMID: 38049726 PMCID: PMC10694963 DOI: 10.1186/s12864-023-09827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The epididymis is a highly regionalized tubular organ possesses vectorial functions of sperm concentration, maturation, transport, and storage. The epididymis-expressed genes and proteins are characterized by regional and developmental dependent pattern. However, a systematic and comprehensive insight into the postnatal development dependent changes in gene and protein expressions of porcine epididymis is still lacking. Here, the RNA and protein of epididymis of Duroc pigs at different postnatal development stages were extracted by using commercial RNeasy Midi kit and extraction buffer (7 M Urea, 2 M thiourea, 3% CHAPS, and 1 mM PMSF) combined with sonication, respectively, which were further subjected to transcriptomic and proteomic profiling. RESULTS Transcriptome analysis indicated that 198 and 163 differentially expressed genes (DEGs) were continuously up-regulated and down-regulated along with postnatal development stage changes, respectively. Most of the up-regulated DEGs linked to functions of endoplasmic reticulum and lysosome, while the down-regulated DEGs mainly related to molecular process of extracellular matrix. Moreover, the following key genes INSIG1, PGRMC1, NPC2, GBA, MMP2, MMP14, SFRP1, ELN, WNT-2, COL3A1, and SPARC were highlighted. A total of 49 differentially expressed proteins (DEPs) corresponding to postnatal development stages changes were uncovered by the proteome analysis. Several key proteins ACSL3 and ACADM, VDAC1 and VDAC2, and KNG1, SERPINB1, C3, and TF implicated in fatty acid metabolism, voltage-gated ion channel assembly, and apoptotic and immune processes were emphasized. In the integrative network, the key genes and proteins formed different clusters and showed strong interactions. Additionally, NPC2, COL3A1, C3, and VDAC1 are located at the hub position in each cluster. CONCLUSIONS The identified postnatal development dependent genes and proteins in the present study will pave the way for shedding light on the molecular basis of porcine epididymis functions and are useful for further studies on the specific regulation mechanisms responsible for epididymal sperm maturation.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zhechen Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Shuo Pang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yating Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Xiaoning Ding
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
8
|
Liu J, Wang E, Cheng Z, Gao Y, Chen C, Jia R, Luo Z, Wang L. Zinc alleviates cadmium-induced reproductive toxicity via regulating ion homeostasis, metallothionein expression, and inhibiting mitochondria-mediated apoptosis in the freshwater crab Sinopotamon henanense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115188. [PMID: 37418865 DOI: 10.1016/j.ecoenv.2023.115188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
Cadmium (Cd) is a carcinogenic environmental pollutant that harms male reproductive systems by lowering sperm quality, impairing spermatogenesis, and causing apoptosis. Although zinc (Zn) has been reported to alleviate Cd toxicity, the underlying mechanisms have not been fully elucidated. The aim of this work was to investigate the mitigating effects of Zn on Cd-induced male reproductive toxicity in the freshwater crab Sinopotamon henanense. Cd exposure not only resulted in its accumulation but also in Zn deficiency, decreased sperm survival rate, poor sperm quality, altered ultrastructure, and increased apoptosis in the testis of the crabs. Morever, Cd exposure increased the expression and distribution of metallothionein (MT) in the testis. However, Zn supplementation effectively mitigated the aforementioned effects of Cd, as demonstrated by preventing Cd accumulation, increasing Zn bioavailability, alleviating apoptosis, increasing mitochondrial membrane potential, decreasing reactive oxygen species (ROS) levels, and restoring MT distribution. Moreover, Zn also significantly reduced the expression of apoptosis-related (p53, Bax, CytC, Apaf-1, Caspase-9, Caspase-3), metal transporter-related ZnT1, metal-responsive transcription factor 1 (MTF1), and the gene and protein expression of MT, while increasing the expression of ZIP1 and Bcl-2 in the testis of Cd-treated crabs. In conclusion, Zn alleviates Cd-induced reproductive toxicity via regulating ion homeostasis, MT expression, and inhibiting mitochondria-mediated apoptosis in the testis of S. henanense. The information obtained in this study may serve as the foundation for further investigation into the development of mitigation strategies for adverse ecological and human health outcomes associated with Cd contamination or poisoning.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ziru Cheng
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuan Gao
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Chienmin Chen
- Department of Environmental Resource Management, Chia Nan University of Pharmacy and Science, Tainan City 000700, Taiwan
| | - Ru Jia
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Zhi Luo
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
9
|
Zhou J, Zeng L, Zhang Y, Wang M, Li Y, Jia Y, Wu L, Su P. Cadmium exposure induces pyroptosis in testicular tissue by increasing oxidative stress and activating the AIM2 inflammasome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157500. [PMID: 35870590 DOI: 10.1016/j.scitotenv.2022.157500] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
High doses of cadmium (Cd) cause irreversible injury to the reproductive system, especially testicular tissue. Studies have shown that pyroptosis is involved in Cd-induced tissue damage, but whether pyroptosis is involved in damage to testicular tissue following Cd exposure remains unclear. To investigate the mechanism of pyroptosis in testicular injury induced by Cd exposure, we used 8-week-old male C57BL/6J mice subjected to consecutive 7 days of intraperitoneal injection of cadmium chloride (CdCl2) at concentrations of 0, 1.0 and 3.0 mg/kg. The results indicated that 3.0 mg/kg CdCl2 significantly decreased serum testosterone levels, sperm concentration and sperm motility, while increased LDH and IL-1β levels. Testicular HE staining indicated that Cd exposure damaged the interstitial cells and increased the atypical residual bodies. Fluorescence results indicated that 3.0 mg/kg CdCl2 increased ROS levels, DNA damage, and the number of TUNEL-positive seminiferous tubule cells in testicular tissue. Transcriptome analysis showed that Cd exposure mainly induced inflammatory and chemokine signaling pathways in testicular tissue, with upregulated mRNA levels of Aim2, and reduced mRNA levels of Nlrp3. Further analysis showed that 3.0 mg/kg CdCl2 increased the expression of testicular HO-1, SOD2, γH2AX and PARP-1, as well as the pyroptosis-related factors GSDMD, GSDME, Caspase-1, ASC and IL-1β. In conclusion, our results provide a possible mechanism by which Cd exposure activates the AIM2 pathway by increasing oxidative stress injury to induce pyroptosis in testicular tissue. This provides a new perspective on testicular damage caused by Cd exposure.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yamin Li
- Maternal and Child Hospital of Hubei Province, Wuhan, China
| | - Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Li Y, Zhang Y, Feng R, Zheng P, Huang H, Zhou S, Ji W, Huang F, Liu H, Zhang G. Cadmium induces testosterone synthesis disorder by testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to reduced sexual behavior in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113345. [PMID: 35219259 DOI: 10.1016/j.ecoenv.2022.113345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a highly toxic metal pollutant that can endanger the life and health of animals. Toll-like receptor 4 (TLR4) can result in testicular cell damage by positively regulating mitogen-activated protein kinase (MAPK)/nuclear factor-kappaB (NF-κB) signaling pathway. Meanwhile, Testosterone (T) synthesis disorder can affect sexual behavior. However, the harmful influence of Cd on animal sexual behavior during its growth and development and the role of TLR4/MAPK/NF-κB signaling pathway in testicular cell damage and testosterone production remained poorly understood. Forty-two-day-old male piglets were fed with diets that contained CdCl2 (20 mg Cd/kg) for 40 days to explore the toxic effects of Cd on sexual behavior. The results showed that Cd activated TLR4, promoted MAPK (p-ERK, p-JNK, and p-p38)/NF-κB expression, induced apoptosis (Caspase-3, Cleaved Caspase3, Bax, Cyt-c, and Caspase-9 expression increased, but Bcl-2 expression decreased) and necroptosis (MLKL, RIPK1, and RIPK3 expression increased) in piglet testis. In addition, Cd exposure decreased mRNA expression of STAR, CYP11A1, 3β-HSD, CYP17A1, and 17β-HSD of testis and the concentrations of T and thyroid-stimulating hormone (TSH). Both the mRNA and protein expression levels of the major genes in TLR4/MAPK/NF-κB signaling pathway, apoptosis signaling pathway, and necroptosis signaling pathway increased significantly and the expression levels of testosterone decreased gradually in pig Leydig cells cultured in vitro after being treated with different concentrations of Cd. Moreover, Cd reduced sexual behavior (the parameters of sniffing, chin resting, and mounting decreased) in piglets. In conclusion, Cd induced testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to testosterone synthesis disorder and sexual behavior reduction in piglets.
Collapse
Affiliation(s)
- Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China.
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Tang J, Bei M, Zhu J, Xu G, Chen D, Jin X, Huang J, Dong J, Shi L, Xu L, Hu B. Acute cadmium exposure induces GSDME-mediated pyroptosis in triple-negative breast cancer cells through ROS generation and NLRP3 inflammasome pathway activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103686. [PMID: 34098069 DOI: 10.1016/j.etap.2021.103686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) exposure can exert an impact on carcinogenicity of breast cancer, however, the mechanism is not fully understood in triple-negative breast cancer (TNBC). We performed a TNBC MDA-MB-231 cell model and assessed the toxic effect of Cd exposure (0, 10, 20, 50, 60, 80 μM). Cd reduced cell viability in a time- and dose-dependent manner, followed by cell cycle arrest in S phase with alterations of cyclin 1A1, cyclin 1D1 and CDK2. Lactate dehydrogenase (LDH) release, apoptosis and pyroptosis were increased, which were relieved by z-VAD. Elevated ROS and NLRP3, caspase-1, IL-1β and IL-18 were detected, which was attenuated by N-acetylcysteine. Increased bax and decreased caspase-8, caspase-9 and caspase-3 were found. gasdermin E (GSDME) was activated with cleavage of GSDME-NT, which was retarded by z-VAD. Additionally, p38 MAPK signaling pathway was activated. Our data demonstrate GSDME-activated pyroptosis in Cd toxicity, implying a potential impact on TNBC.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pathology, and the Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Mingrong Bei
- Department of Cell Biology and Genetics, Shantou University College of Medicine, Shantou, 515041, GD, China
| | - Jia Zhu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Jianzhong Huang
- Department of Public Health, Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Jingjian Dong
- Medical Laboratory Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Lili Shi
- Medical Laboratory Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Long Xu
- Department of Public Health, Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China.
| | - Bo Hu
- Department of Pathology, and the Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, 314001, ZJ, China.
| |
Collapse
|
12
|
Bhardwaj JK, Panchal H. Quercetin mediated attenuation of cadmium-induced oxidative toxicity and apoptosis of spermatogenic cells in caprine testes in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:374-384. [PMID: 34166547 DOI: 10.1002/em.22450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), an environmental toxic heavy metal, has been reported to cause testicular toxicity, which contributes to the recent decline in male fertility worldwide. Quercetin (Qcn), a major dietary antioxidant, has been shown to have protective effects under various pathological conditions. However, whether Qcn provides protection against Cd-stimulated testicular toxicity remains obscured. The present study was therefore aimed at investigating the ameliorative effect of Qcn supplementation on Cd-induced toxicity in the goat testis in vitro in a dose-(10, 50, and 100 μM) and time-dependent (4 and 8 h) manner. Different cytotoxicity, genotoxicity, and biochemical analyses have been carried out using appropriate methods. Cytotoxicity in testicular cells induced by Cd treatment was apparently mitigated by Qcn treatment, evidenced by decreased apoptotic attributes or frequency in Qcn plus Cd-treated groups compared to the only Cd-treated groups. Qcn treatment provides substantial protection to the Cd-triggered aggression in oxidative (increased MDA levels) and total antioxidant capacity (reduced FRAP activity) in testicular tissue, indicating the anti-oxidative function of Qcn against Cd exposure. Moreover, Cd-induced decline in antioxidant status (CAT, SOD, and GST activity) was markedly restored by Qcn supplementation in testicular tissue. In conclusion, this study shows that Qcn treatment significantly attenuated the Cd-evoked testicular damage, suggesting its beneficial potential in preventing or at least in managing the gonadotoxicity in males induced by steadily increasing Cd contamination in the environment.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
13
|
Altered Expression of DAAM1 and PREP Induced by Cadmium Toxicity Is Counteracted by Melatonin in the Rat Testis. Genes (Basel) 2021; 12:genes12071016. [PMID: 34208970 PMCID: PMC8304460 DOI: 10.3390/genes12071016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3β-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.
Collapse
|
14
|
Zhi Y, Zhou X, Yu J, Yuan L, Zhang H, Ng DCH, Xu Z, Xu D. Pathophysiological Significance of WDR62 and JNK Signaling in Human Diseases. Front Cell Dev Biol 2021; 9:640753. [PMID: 33937237 PMCID: PMC8086514 DOI: 10.3389/fcell.2021.640753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) is highly evolutionarily conserved and plays important roles in a broad range of physiological and pathological processes. The WD40-repeat protein 62 (WDR62) is a scaffold protein that recruits different components of the JNK signaling pathway to regulate several human diseases including neurological disorders, infertility, and tumorigenesis. Recent studies revealed that WDR62 regulates the process of neural stem cell mitosis and germ cell meiosis through JNK signaling. In this review we summarize the roles of WDR62 and JNK signaling in neuronal and non-neuronal contexts and discuss how JNK-dependent signaling regulates both processes. WDR62 is involved in various human disorders via JNK signaling regulation, and may represent a promising therapeutic strategy for the treatment of related diseases.
Collapse
Affiliation(s)
- Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hongsheng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Dominic C H Ng
- Faculty of Medicine, School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|