1
|
Wang D, Liu X, Chen B, Shang Y, Wan T, Zhang S, Liu H, Shi Y, Chen X, Sun H. Down-regulation of miR-138-5p in PP2A KO mice promoted apoptosis of spermatocytes. Mol Biol Rep 2024; 51:1147. [PMID: 39535579 DOI: 10.1007/s11033-024-10096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Protein phosphatase 2 A (PP2A) is known to have a pivotal and diverse functions in various physiological processes. In the previous study, we utilized the cre-loxp system to generate germ cell-specific knockout mice for the PP2A catalytic subunit alpha subunit (Ppp2cacKO). METHODS AND RESULTS Using high-throughput miRNA sequencing of testis tissues and real‑time PCR, we have identified a notable decrease in the expression of miR-138-5p in the testes of Ppp2cacKO mice. Our findings indicate that miR-138-5p plays a role in the regulation of apoptosis and proliferation of GC2 cells. Furthermore, bioinformatics analyses suggested that miR-138- 5p may target the transcriptional repressor Trps1. Consistent with these predictions, we observed a significant upregulation of Trps1 in the testes of Ppp2cacKO mice. Through transfection experiments, we have validated the negative regulation of Trps1 expression by miR-138-5p in GC2 cells. CONCLUSION Our study indicates that the down-regulation of miR-138-5p in PP2A KO mice, which targets Trps1 to promote spermatocyte apoptosis.
Collapse
Affiliation(s)
- Danni Wang
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Xing Liu
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Bingyan Chen
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Yuwei Shang
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Ting Wan
- Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, 213003, China
| | - Shu Zhang
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Huijun Liu
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Yichao Shi
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Xia Chen
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Huiting Sun
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China.
| |
Collapse
|
2
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Lyu M, Li F, Wang X, Xu K, Sun S. miR-145 Modulates Fatty Acid Metabolism by Targeting FOXO1 to Affect SERBP1 Activity in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7440-7450. [PMID: 37154263 DOI: 10.1021/acs.jafc.2c09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNA-mediated gene regulation is important for the regulation of fatty acid metabolism and synthesis. Our previous study uncovered that the miR-145 expression is higher in the lactating mammary gland of dairy cows than in the dry-period, but the underlying molecular mechanism is incompletely understood. In this study, we have investigated the potential role of miR-145 in bovine mammary epithelial cells (BMECs). We found that the expression of miR-145 gradually increased during lactation. CRISPR/Cas9-mediated knockout (KO) of miR-145 in BMECs results in the downregulated expression of fatty acid metabolism-associated genes. Further results revealed that miR-145 KO reduced total triacylglycerol (TAG) and cholesterol (TC) accumulation and altered the composition of intracellular fatty acids (C16:0, C18:0, and C18:1). Conversely, miR-145 overexpression had the opposite effect. Bioinformatics online program predicted that miR-145 targets the 3'-UTR of the Forkhead Box O1 (FOXO1) gene. Subsequently, FOXO1 was identified as a direct target of miR-145 by qRT-PCR, Western blot analysis, and luciferase reporter assay. Furthermore, siRNA-mediated silencing of FOXO1 promoted fatty acid metabolism and TAG synthesis in BMECs. Additionally, we observed the involvement of FOXO1 in the transcriptional activity of the sterol regulatory element-binding protein 1 (SREBP1) gene promoter. Overall, our findings indicated that miR-145 relieves the inhibitory effect of FOXO1 on SREBP1 expression by targeting FOXO1 and subsequently regulating fatty acid metabolism. Thus, our results provide valuable information on the molecular mechanisms for improving milk yield and quality from the perspective of miRNA-mRNA networks.
Collapse
Affiliation(s)
- Ming Lyu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Fang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Xu Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Kun Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Shuang Sun
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, PR China
| |
Collapse
|
4
|
Rehman A, Mehta KJ. Betaine in ameliorating alcohol-induced hepatic steatosis. Eur J Nutr 2021; 61:1167-1176. [PMID: 34817678 PMCID: PMC8921017 DOI: 10.1007/s00394-021-02738-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023]
Abstract
Alcohol-associated liver disease (AALD) is one of most common chronic liver diseases. Hepatic steatosis is the earliest stage in AALD pathological spectrum, reversible by alcohol abstinence. Untreated steatosis can progress to steatohepatitis, fibrosis and/or cirrhosis. Considering the difficulties in achieving complete abstinence, challenges in disease reversal at advanced stages, high costs of AALD management and lack of standardised prescribed medications for treatment, it is essential to explore low-cost natural compounds that can target AALD at an early stage and halt or decelerate disease progression. Betaine is a non-hazardous naturally occurring nutrient. Here, we address the mechanisms of alcohol-induced hepatic steatosis, the role of betaine in reversing the effects i.e., its action against hepatic steatosis in animal models and humans, and the associated cellular and molecular processes. Accordingly, the review discusses how betaine restores the alcohol-induced reduction in methylation potential by elevating the levels of S-adenosylmethionine and methionine. It details how betaine reinstates alcohol-induced alterations in the expressions and/or activities of protein phosphtase-2A, FOXO1, PPAR-α, AMPK, SREBP-1c, fatty acid synthase, diacylglycerol transferase-2, adiponectin and nitric oxide. Interrelationships between these factors in preventing de novo lipogenesis, reducing hepatic uptake of adipose-tissue-derived free fatty acids, promoting VLDL synthesis and secretion, and restoring β-oxidation of fatty acids to attenuate hepatic triglyceride accumulation are elaborated. Despite its therapeutic potential, very few clinical trials have examined betaine’s effect on alcohol-induced hepatic lipid accumulation. This review will provide further confidence to conduct randomised control trials to enable maximum utilisation of betaine’s remedial properties to treat alcohol-induced hepatic steatosis.
Collapse
Affiliation(s)
- Aisha Rehman
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
5
|
Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. BIOLOGY 2021; 10:456. [PMID: 34067313 PMCID: PMC8224793 DOI: 10.3390/biology10060456] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Medicinal herbs and many food ingredients possess favorable biological properties that contribute to their therapeutic activities. One such natural product is betaine, a stable, nontoxic natural substance that is present in animals, plants, and microorganisms. Betaine is also endogenously synthesized through the metabolism of choline or exogenously consumed through dietary intake. Betaine mainly functions as (i) an osmolyte and (ii) a methyl-group donor. This review describes the major physiological effects of betaine in whole-body health and its ability to protect against both liver- as well as non-liver-related diseases and conditions. Betaine's role in preventing/attenuating both alcohol-induced and metabolic-associated liver diseases has been well studied and is extensively reviewed here. Several studies show that betaine protects against the development of alcohol-induced hepatic steatosis, apoptosis, and accumulation of damaged proteins. Additionally, it can significantly prevent/attenuate progressive liver injury by preserving gut integrity and adipose function. The protective effects are primarily associated with the regulation of methionine metabolism through removing homocysteine and maintaining cellular SAM:SAH ratios. Similarly, betaine prevents metabolic-associated fatty liver disease and its progression. In addition, betaine has a neuroprotective role, preserves myocardial function, and prevents pancreatic steatosis. Betaine also attenuates oxidant stress, endoplasmic reticulum stress, inflammation, and cancer development. To conclude, betaine exerts significant therapeutic and biological effects that are potentially beneficial for alleviating a diverse number of human diseases and conditions.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew C. Paal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
He Q, Luo J, Wu J, Yao W, Li Z, Wang H, Xu H. FoxO1 Knockdown Promotes Fatty Acid Synthesis via Modulating SREBP1 Activities in the Dairy Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12067-12078. [PMID: 33054209 DOI: 10.1021/acs.jafc.0c05237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
FoxO1 is a crucial transcription factor involved in lipid metabolism in mouse liver through repressing a key regulator of lipogenesis, sterol regulatory element binding protein 1 (SREBP1). However, it remains elusive whether FoxO1 plays roles in the regulation of fatty acid metabolism during lactation in dairy goats. In this study, we aim to investigate the function of FoxO1 in goat mammary epithelial cells (GMECs). We found that the expression of FoxO1 is significantly upregulated during lactation compared with the dry period. FoxO1 knockdown enhanced the expression of genes related to de novo fatty acid synthesis (e.g., FASN, ELOVL6 and SCD1) and triacylglycerol (TAG) synthesis (e.g., DGAT2 and GPAM). Consistently, intracellular TAG was significantly increased in FoxO1 knockdown cells and reduced in FoxO1 overexpression cells. Immunofluorescence staining revealed that insulin suppresses FoxO1 transcription by promoting its nuclear export. Further, we found that FoxO1 inhibits insulin-induced SREBP1 promoter activities in GMECs. Moreover, FoxO1 suppresses SREBP1 transcription via the LXR response element (LXRE) and SREBP response element (SRE) located in the SREBP1 promoter. Our data reveal that FoxO1 plays critical roles in regulating the synthesis of the fatty acid and triacylglycerol (TAG) in GMECs.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|