1
|
Higashi Y, Nishida C, Tomonaga T, Izumi H, Kawai N, Morimoto T, Hara K, Yamasaki K, Moriyama A, Takeshita JI, Wang KY, Higashi H, Ono R, Sumiya K, Sakurai K, Yatera K, Morimoto Y. Intratracheal instillation of polyacrylic acid induced pulmonary fibrosis with elevated transforming growth factor-β1 and connective tissue growth factor. Toxicology 2024; 506:153845. [PMID: 38801935 DOI: 10.1016/j.tox.2024.153845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
We investigated the intratracheal instillation of Polyacrylic acid (PAA) in rats to determine if it would cause pulmonary disorders, and to see what factors would be associated with the pathological changes. Male F344 rats were intratracheally instilled with low (0.2 mg/rat) and high (1.0 mg/rat) doses of PAA. They were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months after PAA exposure to examine inflammatory and fibrotic changes in the lungs. There was a persistent increase in the neutrophil count, lactate dehydrogenase (LDH) levels, cytokine-induced neutrophil chemoattractant (CINC) values in bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in lung tissue. Transforming growth factor-beta 1 (TGF-β1), a fibrotic factor, showed a sustained increase in the BALF until 6 months after intratracheal instillation, and connective tissue growth factor (CTGF) in lung tissue was elevated at 3 days after exposure. Histopathological findings in the lung tissue showed persistent (more than one month) inflammation, fibrotic changes, and epithelial-mesenchymal transition (EMT) changes. There was also a strong correlation between TGF-β1 in the BALF and, especially, in the fibrosis score of histopathological specimens. Intratracheal instillation of PAA induced persistent neutrophilic inflammation, fibrosis, and EMT in the rats' lungs, and TGF-β1 and CTGF appeared to be associated with the persistent fibrosis.
Collapse
Affiliation(s)
- Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kanako Hara
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Ryohei Ono
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
2
|
Morimoto T, Izumi H, Tomonaga T, Nishida C, Kawai N, Higashi Y, Wang KY, Ono R, Sumiya K, Sakurai K, Moriyama A, Takeshita JI, Yamasaki K, Yatera K, Morimoto Y. The Effects of Endoplasmic Reticulum Stress via Intratracheal Instillation of Water-Soluble Acrylic Acid Polymer on the Lungs of Rats. Int J Mol Sci 2024; 25:3573. [PMID: 38612383 PMCID: PMC11011863 DOI: 10.3390/ijms25073573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.
Collapse
Affiliation(s)
- Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Ryohei Ono
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; (A.M.); (J.-i.T.)
| | - Jun-ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; (A.M.); (J.-i.T.)
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| |
Collapse
|
3
|
Bai J, Wang H, Yang S, Lu J, Li C, Sun Y, Huo T, Deng J, Zhang Q. Dust fall PM 2.5-induced lung inflammation in rats is associated with hypermethylation of the IFN-γ gene promoter via the PI3K-Akt-DNMT3b pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103942. [PMID: 35933082 DOI: 10.1016/j.etap.2022.103942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Inflammation is one of the major adverse effects of fine particulate matter (PM2.5) on the lung system; however, its mechanisms remain unclear. Rats were exposed to different concentrations of PM2.5 to investigate the mechanism of short-term exposure-induced lung inflammation. The regulation of PI3K-Akt and DNA methyltransferase 3b (DNMT3b) was assessed by using a PI3K inhibitor and a DNA methyltransferase inhibitor. We found that PM2.5 could decrease interferon-γ (IFN-γ) levels and increase interleukin 4 (IL-4), IL-5 and IL-13 levels in bronchoalveolar lavage fluid (BALF) to promote eosinophil infiltration and eventually lead to allergic pulmonary inflammation. Moreover, the CpG island methylation rate of the IFN-γ promoter and the protein expression of DNMT3b, PI3K and p-Akt were increased in lung tissues after PM2.5 exposure. Both inhibitors reversed the CpG island hypermethylation of IFN-γ. In conclusion, in PM2.5-induced lung injury, the activated PI3K-Akt pathway, via an increase in DNMT3b expression, is involved in CpG hypermethylation of the IFN-γ gene promoter.
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Hailan Wang
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Siyu Yang
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chenwen Li
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Tingting Huo
- School of Environmental and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang 621000, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Higashi Y, Morimoto Y, Nishida C, Tomonaga T, Izumi H, Wang K, Higashi H, Ono R, Sumiya K, Sakurai K, Yamasaki K, Yatera K. Pulmonary disorder induced by cross‐linked polyacrylic acid. J Occup Health 2022; 64:e12369. [DOI: 10.1002/1348-9585.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Yasuyuki Higashi
- Department of Respiratory Medidatacine University of Occupational and Environmental Health Fukuoka Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Fukuoka Japan
| | - Chinatsu Nishida
- Department of Respiratory Medidatacine University of Occupational and Environmental Health Fukuoka Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Fukuoka Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Fukuoka Japan
| | - Ke‐Yong Wang
- Shared‐Use Research Center, School of Medicine University of Occupational and Environmental Health, Japan Fukuoka Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Fukuoka Japan
| | - Ryohei Ono
- Department of Chemistry and Biochemistry The University of Kitakyushu Fukuoka Japan
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry The University of Kitakyushu Fukuoka Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry The University of Kitakyushu Fukuoka Japan
| | - Kei Yamasaki
- Department of Respiratory Medidatacine University of Occupational and Environmental Health Fukuoka Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medidatacine University of Occupational and Environmental Health Fukuoka Japan
| |
Collapse
|