1
|
Li J, Li Y, Zhao Y, Liu S, Li W, Tan H, Shen L, Ran Y, Hao Y. Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways. Arch Toxicol 2024:10.1007/s00204-024-03949-2. [PMID: 39729112 DOI: 10.1007/s00204-024-03949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms. Using ETHE1 gene knockout C57BL/6 mice (10 mg/kg DU) and renal cell models (500 µM DU) exposed to DU, we observed significantly reduced levels of hydrogen sulfide (H2S) and glutathione (GSH), alongside decreased adenosine triphosphate (ATP) content and increased oxidative stress. Our results demonstrated that knocking out or silencing ETHE1 led to a significant reduction in H2S and GSH levels, whereas the opposite occurred when was ETHE1 overexpressed. When the H2S donor sodium hydrosulfide and GSH precursor N-acetylcysteine were used to treat animals or cells, cellular ATP levels were increased, oxidative stress markers were reduced, and kidney damage was mitigated. In addition, H2S and GSH interacted with each other after DU poisoning. These findings suggest that the ETHE1/H2S/GSH pathway plays a critical role in mediating DU-induced mitochondrial dysfunction in renal cells, highlighting potential therapeutic targets for mitigating the harmful effects of DU. Thus, this study expands our understanding of DU-induced renal damage pathways, providing avenues for further research and intervention strategies.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yong Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Suiyi Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Wenrun Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Huanhuan Tan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Casas-Rodríguez A, Šentjurc T, Diez-Quijada L, Pichardo S, Žegura B, Jos A, Cameán AM. Invitro evaluation of interactions between cylindrospermopsin and water contaminants, arsenic and cadmium, in two human immune cell lines. CHEMOSPHERE 2024; 368:143727. [PMID: 39532252 DOI: 10.1016/j.chemosphere.2024.143727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin with worldwide distribution, is gaining increased attention due to its bioaccumulation potential and toxicological effects. Previous research suggests that CYN may interact with other environmental contaminants, potentially amplifying its toxicity. To address this concern, the present study investigated the combined effects of CYN with arsenic (As) and cadmium (Cd) on human immune cell lines, Jurkat and THP-1. Cytotoxicity tests showed that As and Cd significantly decreased the viability of both cell lines after 24 and 48 h of exposure. The EC50 (24 h) values for Jurkat cells were 13.15 ± 1.97 (As) and 36.92 ± 3.77 μM (Cd), respectively, while for THP-1, the EC50 (24 h) values were 46.48 ± 0.17 for As and 55.09 ± 4.98 μM for Cd. Furthermore, individual contaminants and their mixtures with CYN impaired monocyte differentiation into macrophages. The effect on mRNA expression of some cytokines (TNF-α, INF-γ, IL-2, IL-6 and IL-8) was also assessed. In the Jurkat cell line, As upregulated IL-8 expression while Cd increased the expression of all interleukins. Exposure to binary combinations (CYN + As, and CYN + Cd) increased IL-2 and INF-γ expression. In THP-1 cells, As elevated IL-8 and INF-γ expression, whereas Cd caused an increase in TNF-α and INF-γ expression. Exposure to CYN + As up-regulated IL-8 and INF-γ expression, while the CYN + Cd combination down-regulated TNF-α expression. These findings highlight the complex interactions between contaminants, emphasizing the need for evaluating combined effects in risk assessments.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Tjaša Šentjurc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| |
Collapse
|
3
|
Das S, Thakur S, Cahais V, Virard F, Claeys L, Renard C, Cuenin C, Cros MP, Keïta S, Venuti A, Sirand C, Ghantous A, Herceg Z, Korenjak M, Zavadil J. Molecular and cell phenotype programs in oral epithelial cells directed by co-exposure to arsenic and smokeless tobacco. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618077. [PMID: 39463997 PMCID: PMC11507705 DOI: 10.1101/2024.10.14.618077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic arsenic exposure can lead to various health issues, including cancer. Concerns have been mounting about the enhancement of arsenic toxicity through co-exposure to various prevalent lifestyle habits. Smokeless tobacco products are commonly consumed in South Asian countries, where their use frequently co-occurs with exposure to arsenic from contaminated groundwater. To decipher the in vitro molecular and cellular responses to arsenic and/or smokeless tobacco, we performed temporal multi-omics analysis of the transcriptome and DNA methylome remodelling in exposed hTERT-immortalized human normal oral keratinocytes (NOK), as well as arsenic and/or smokeless tobacco genotoxicity and mutagenicity investigations in NOK cells and in human p53 knock-in murine embryonic fibroblasts (Hupki MEF). RNAseq results from acute exposures to arsenic alone and in combination with smokeless tobacco extract revealed upregulation of genes with roles in cell cycle changes, apoptosis and inflammation responses. This was in keeping with global DNA hypomethylation affecting genes involved in the same processes in response to chronic treatment in NOK cells. At the phenotypic level, we observed a dose-dependent decrease in NOK cell viability, induction of DNA damage, cell cycle changes and increased apoptosis, with the most pronounced effects observed under arsenic and SLT co-exposure conditions. Live-cell imaging experiments indicated that the DNA damage likely resulted from induction of apoptosis, an observation validated by a lack of exome-wide mutagenesis in response to chronic exposure to arsenic and/or smokeless tobacco. In sum, our integrative omics study provides novel insights into the acute and chronic responses to arsenic and smokeless tobacco (co-)exposure, with both types of responses converging on several key mechanisms associated with cancer hallmark processes. The generated rich catalogue of molecular programs in oral cells regulated by arsenic and smokeless tobacco (co-)exposure may provide bases for future development of biomarkers for use in molecular epidemiology studies of exposed populations at risk of developing oral cancer.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - François Virard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- University Claude Bernard Lyon 1, INSERM U1052–CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculty of Odontology, Hospices Civils de Lyon, Lyon, France
| | - Liesel Claeys
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Marie-Pierre Cros
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Keïta
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Assunta Venuti
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cécilia Sirand
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
4
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
5
|
Huang D, Wang S. Association between urine uranium and asthma prevalence. Front Public Health 2024; 11:1326258. [PMID: 38259799 PMCID: PMC10800476 DOI: 10.3389/fpubh.2023.1326258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background Previous studies showed that urine uranium (U) is associated with asthma prevalence in adults. However, the association between them among the general population is unclear. Therefore, this study aimed to explore this unclear association. Methods The data of the participants were collected from the 2007-2016 National Health and Nutrition Examination Survey (NHANES) performed in the United States. Continuous variables with a skewed distribution were analyzed using Ln-transformation. The association between urine U and asthma prevalence was analyzed by multiple regression analysis, and the linear association between them was evaluated by smoothed curve fitting. The subgroup analysis was performed using the hierarchical multivariate regression analysis. Results A total of 13,581 participants were included in our analysis. The multivariate regression analysis showed that LnU was independently and positively correlated with asthma prevalence in the general population (OR = 1.12; 95% CI: 1.04-1.20; p = 0.002). The subgroup analysis revealed that college graduate or above showed a stronger association between LnU and asthma prevalence (<9th grade: OR = 0.84; 95% CI: 0.61-1.14; 9-11th grade: OR = 1.23; 95% CI: 0.99-1.52; high school grade: OR = 1.00; 95% CI: 0.84-1.19; college: OR = 1.04; 95% CI: 0.91-1.19; ≥college graduate: OR = 1.32; 95% CI: 1.11-1.57; P for interaction = 0.0389). Conclusion Our research suggested that urinary U levels are positively associated with asthma prevalence among the general population of the United States, and the association is especially strong among people with high levels of education.
Collapse
Affiliation(s)
- Dongdong Huang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Saibin Wang
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, China
| |
Collapse
|
6
|
Thompson González N, Ong J, Luo L, MacKenzie D. Chronic Community Exposure to Environmental Metal Mixtures Is Associated with Selected Cytokines in the Navajo Birth Cohort Study (NBCS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14939. [PMID: 36429656 PMCID: PMC9690552 DOI: 10.3390/ijerph192214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Many tribal populations are characterized by health disparities, including higher rates of infection, metabolic syndrome, and cancer-all of which are mediated by the immune system. Members of the Navajo Nation have suffered chronic low-level exposure to metal mixtures from uranium mine wastes for decades. We suspect that such metal and metalloid exposures lead to adverse health effects via their modulation of immune system function. We examined the relationships between nine key metal and metalloid exposures (in blood and urine) with 11 circulating biomarkers (cytokines and CRP in serum) in 231 pregnant Navajo women participating in the Navajo Birth Cohort Study. Biomonitored levels of uranium and arsenic species were considerably higher in participants than NHANES averages. Each biomarker was associated with a unique set of exposures, and arsenic species were generally immunosuppressive (decreased cellular and humoral stimulating cytokines). Overall, our results suggest that environmental metal and metalloid exposures modulate immune status in pregnant Navajo women, which may impact long-term health outcomes in mothers and their children.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Academic Science Education and Research Training Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jennifer Ong
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Li Luo
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra MacKenzie
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Schilz JR, Dashner-Titus EJ, Simmons KA, Erdei E, Bolt AM, MacKenzie DA, Hudson LG. The immunotoxicity of natural and depleted uranium: From cells to people. Toxicol Appl Pharmacol 2022; 454:116252. [PMID: 36152676 PMCID: PMC10044422 DOI: 10.1016/j.taap.2022.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Uranium is a naturally occurring element found in the environment as a mixture of isotopes with differing radioactive properties. Enrichment of mined material results in depleted uranium waste with substantially reduced radioactivity but retains the capacity for chemical toxicity. Uranium mine and milling waste are dispersed by wind and rain leading to environmental exposures through soil, air, and water contamination. Uranium exposure is associated with numerous adverse health outcomes in humans, yet there is limited understanding of the effects of depleted uranium on the immune system. The purpose of this review is to summarize findings on uranium immunotoxicity obtained from cell, rodent and human population studies. We also highlight how each model contributes to an understanding of mechanisms that lead to immunotoxicity and limitations inherent within each system. Information from population, animal, and laboratory studies will be needed to significantly expand our knowledge of the contributions of depleted uranium to immune dysregulation, which may then inform prevention or intervention measures for exposed communities.
Collapse
Affiliation(s)
- Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, Albuquerque, NM, United States of America.
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Karen A Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Esther Erdei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Debra A MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
8
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Schilz JR, Dashner-Titus EJ, Luo L, Simmons KA, MacKenzie DA, Hudson LG. Co-exposure of sodium arsenite and uranyl acetate differentially alters gene expression in CD3/CD28 activated CD4+ T-cells. Toxicol Rep 2021; 8:1917-1929. [PMID: 34926170 PMCID: PMC8649082 DOI: 10.1016/j.toxrep.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Communities in the western region of the United States experience environmental exposure to metal mixtures from living in proximity to numerous unremediated abandoned uranium mines. Metals including arsenic and uranium co-occur in and around these sites at levels higher than the United States Environmental Protection Agency maximum contaminant levels. To address the potential effect of these metals on the activation of CD4+ T-cells, we used RNA sequencing methods to determine the effect of exposure to sodium arsenite (1 μM and 10 μM), uranyl acetate (3 μM and 30 μM) or a mixture of sodium arsenite and uranyl acetate (1 μM sodium arsenite + 3 μM uranyl acetate). Sodium arsenite induced a dose dependent effect on activation associated gene expression; targeting immune response genes at the lower dose. Increases in oxidative stress gene expression were observed with both sodium arsenite doses. While uranyl acetate alone did not significantly alter activation associated gene expression, the mixture of uranyl acetate with sodium arsenite demonstrated a combined effect relative to sodium arsenite alone. The results demonstrate the need to investigate metal and metalloid mixtures at environmentally relevant concentrations to better understand the toxicological impact of these mixtures on T-cell activation, function and immune dysregulation.
Collapse
Key Words
- APC, antigen presenting cell
- AUM, abandoned uranium mine
- Arsenic
- DEG, differentially expressed gene
- GCLM, glutamate-cysteine ligase
- HMOX1, heme oxygenase 1
- IFNγ, interferon gamma
- IL-2, interleukin 2
- MHC, major histone compatibility complex
- Mixture toxicology
- NQO1, NAD(P)H quinone dehydrogenase
- PCA, principal component analysis
- SOD1, super oxide dismutase 1
- T-lymphocytes
- TCR, T-cell receptor
- Th, T-helper
- Uranium
Collapse
Affiliation(s)
- Jodi R. Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Erica J. Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Li Luo
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Karen A. Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Debra A. MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
10
|
El Hayek E, Medina S, Guo J, Noureddine A, Zychowski KE, Hunter R, Velasco CA, Wiesse M, Maestas-Olguin A, Brinker CJ, Brearley A, Spilde M, Howard T, Lauer FT, Herbert G, Ali AM, Burchiel S, Campen MJ, Cerrato JM. Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9949-9957. [PMID: 34235927 PMCID: PMC8413144 DOI: 10.1021/acs.est.1c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 μM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 μm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 μm) at 100 μM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico 87701, United States
| | - Jimin Guo
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Internal Medicine, Molecular Medicine, MSC08 4720, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Katherine E Zychowski
- Department of Biobehavioral Health and Data Sciences, MSC09 5350, University of New Mexico College of Nursing, Albuquerque, New Mexico 87106, United States
| | - Russell Hunter
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Carmen A Velasco
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Chemical Engineering Faculty, Central University of Ecuador, Ciudad Universitaria, Ritter s/n & Bolivia, P.O. Box 17-01-3972, Quito 170129, Ecuador
| | - Marco Wiesse
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Angelea Maestas-Olguin
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tamara Howard
- Department of Cell Biology and Physiology, MSC08 4750, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Guy Herbert
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Abdul Mehdi Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Scott Burchiel
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - José M Cerrato
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|