1
|
Zhang Y, Xu D, Song S, Wang G, Su H, Wu Y, Zhang Y, Liu H, Li Q, Wang X, Yu Z, Liu X. AKT/mTOR-mediated autophagic signaling is associated with TCDD-induced cleft palate. Reprod Toxicol 2024; 130:108731. [PMID: 39401686 DOI: 10.1016/j.reprotox.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
In utero exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can contribute to high rates of cleft palate (CP) formation, but the mechanistic basis for these effects remains uncertain. Here, multi-omics-based metabolomic and transcriptomic analyses were employed to characterize the etiological basis for TCDD-induced CP on gestational day 14.5 (GD14.5). These analyses revealed that TCDD-induced CP formation is associated with calcium, MAPK, PI3K-Akt, and mTOR pathway signaling. PI3K-Akt and mTOR signaling activity is closely linked with the maintenance of cellular proliferation and survival. Moreover, mTOR-mediated regulation of autophagic activity is essential for ensuring an appropriate balance between metabolic activity and growth. Murine embryonic palatal mesenchymal (MEPM) cell proliferation was thus characterized, autophagic activity in these cells was evaluated through electron microscopy and western immunoblotting was used to compare the levels of autophagy- and AKT/mTOR-related protein between the control and TCDD groups on GD14.5. These analyses indicated that MEPM cell proliferative and autophagic activity was inhibited in response to TCDD exposure with the concomitant activation of AKT/mTOR signaling, in line with the multi-omics data. Together, these findings suggested that following TCDD exposure, the activation of AKT/mTOR-related autophagic signaling may play a role in the loss of appropriate palatal cell homeostasis, culminating in the incidence of CP.
Collapse
Affiliation(s)
- Yaxin Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Dongliang Xu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qingfu Li
- Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiangdong Wang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China.
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
2
|
Wu C, Liu H, Zhan Z, Zhang X, Zhang M, You J, Ma J. Unveiling dysregulated lncRNAs and networks in non-syndromic cleft lip with or without cleft palate pathogenesis. Sci Rep 2024; 14:1047. [PMID: 38200098 PMCID: PMC10781966 DOI: 10.1038/s41598-024-51747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common congenital facial malformation with a complex, incompletely understood origin. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, potentially shedding light on NSCL/P's etiology. This study aimed to identify critical lncRNAs and construct regulatory networks to unveil NSCL/P's underlying molecular mechanisms. Integrating gene expression profiles from the Gene Expression Omnibus (GEO) database, we pinpointed 30 dysregulated NSCL/P-associated lncRNAs. Subsequent analyses enabled the creation of competing endogenous RNA (ceRNA) networks, lncRNA-RNA binding protein (RBP) interaction networks, and lncRNA cis and trans regulation networks. RT-qPCR was used to examine the regulatory networks of lncRNA in vivo and in vitro. Furthermore, protein levels of lncRNA target genes were validated in human NSCL/P tissue samples and murine palatal shelves. Consequently, two lncRNAs and three mRNAs: FENDRR (log2FC = - 0.671, P = 0.040), TPT1-AS1 (log2FC = 0.854, P = 0.003), EIF3H (log2FC = - 1.081, P = 0.041), RBBP6 (log2FC = 0.914, P = 0.037), and SRSF1 (log2FC = 0.763, P = 0.026) emerged as potential contributors to NSCL/P pathogenesis. Functional enrichment analyses illuminated the biological functions and pathways associated with these lncRNA-related networks in NSCL/P. In summary, this study comprehensively delineates the dysregulated transcriptional landscape, identifies associated lncRNAs, and reveals pivotal sub-networks relevant to NSCL/P development, aiding our understanding of its molecular progression and setting the stage for further exploration of lncRNA and mRNA regulation in NSCL/P.
Collapse
Affiliation(s)
- Caihong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Stomatological Hospital affiliated Suzhou Vocational Health College, Suzhou, China
| | - Haojie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhuorong Zhan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Mengnan Zhang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jiawen You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Wang B, Xu M, Zhao J, Yin N, Wang Y, Song T. Single-cell Transcriptomics Reveals Activation of Macrophages in All-trans Retinoic Acid (atRA)-induced Cleft Palate. J Craniofac Surg 2024; 35:177-184. [PMID: 38049149 DOI: 10.1097/scs.0000000000009782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 12/06/2023] Open
Abstract
Cleft palate is among the most common birth defects with an impact on swallowing and speaking and is difficult to diagnose with ultrasound during pregnancy. In this study, we systematically capture the cellular composition of all-trans retinoic acid (atRA)-exposed and normal embryonic gestation 16.5 days mouse palate by the single-cell RNA sequencing technique. The authors identified 14 major cell types with the largest proportion of fibroblasts. The proportion of myeloid cells in atRA-exposed palate was markedly higher than those in the normal palate tissue, especially M1-like macrophages and monocytes. The upregulated genes of the different expression genes between atRA-exposed palate and normal palate tissue were linked to the biological processes of leukocyte chemotaxis and migration. Protein TLR2, CXCR4, THBS1, MRC1, transcription factor encoding genes Cebpb, Fos, Jun, Rela, and signaling pathway IL-17 and phagosome were found to be significantly involved in these processes. Subsequently, cellular communication network analysis suggested that myeloid-centered cell interactions SELL, SELPLG, MIF, CXCL, ANNEXIN, THBS, and NECTIN were significantly more activated in atRA-exposed palate. Overall, we delineate the single-cell landscape of atRA-induced cleft palate, revealing the effects of overexposure to atRA during palate tissue development and providing insights for the diagnosis of cleft palate.
Collapse
Affiliation(s)
- Binqing Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
4
|
Yu Z, Wang G, Song S, Zhang Y, Wu Y, Zhang Y, Duan W, Liu X. Associations between the proliferation of palatal mesenchymal cells, Tgfβ2 promoter methylation, Meg3 expression, and Smad signaling in atRA-induced cleft palate. Reprod Toxicol 2023; 122:108486. [PMID: 37866657 DOI: 10.1016/j.reprotox.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
All-trans retinoic acid (atRA) is a teratogen that can induce cleft palate formation. During palatal development, murine embryonic palate mesenchymal (MEPM) cell proliferation is required for the appropriate development of the palatal frame, with Meg3 serving as a key regulator of the proliferative activity of these cells and the associated epithelial-mesenchymal transition process. DNA methylation and signaling via the TGFβ/Smad pathway are key in regulating embryonic development. Here, the impact of atRA on MEPM cell proliferation and associations between Tgfβ2 promoter methylation, Meg3, and signaling via the Smad pathway were explored using C57BL/6 N mice treated with atRA (100 mg/kg) to induce fetal cleft palate formation. Immunohistochemistry and BrdU assays were used to detect MEPM proliferation and DNA methylation assays were performed to detect Tgfβ2 promoter expression. These analyses revealed that atRA suppressed MEPM cell proliferation, promoted the upregulation of Meg3, and reduced the levels of Smad2 and Tgfβ2 expression phosphorylation, whereas Tgfβ2 promoter methylation was unaffected. RNA immunoprecipitation experiments indicated that the TgfβI receptor is directly targeted by Meg3, suggesting that the ability of atRA to induce cleft palate may be mediated through the Tgfβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
5
|
Yu Z, Song S, Wang G, Zhang Y, Zhang Y, Wu Y, Liu H, Zhang Y, Liu X. The mechanisms governing mouse embryonic palate mesenchymal cells' proliferation associated with atRA-induced cleft palate in mice: insights from integrated transcriptomic and metabolomic analyses. Arch Toxicol 2023; 97:2143-2153. [PMID: 37278767 DOI: 10.1007/s00204-023-03534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
While exposure to high levels of all-trans retinoic acid (atRA) during pregnancy is known to suppress murine embryonic palate mesenchymal (MEPM) cells proliferation and to result in cleft palate (CP) development, the underlying mechanisms are poorly understood. Accordingly, this study was designed with the goal of clarifying the etiological basis for atRA-induced CP. A murine model of CP was established via the oral administration of atRA to pregnant mice on gestational day (GD) 10.5, after which transcriptomic and metabolomic analyses were performed with the goal of clarifying the critical genes and metabolites associated with CP development through an integrated multi-omics approach. MEPM cells proliferation was altered by atRA exposure as expected, contributing to CP incidence. In total, 110 genes were differentially expressed in the atRA treatment groups, suggesting that atRA may influence key biological processes including stimulus, adhesion, and signaling-related activities. In addition, 133 differentially abundant metabolites were identified including molecules associated with ABC transporters, protein digestion and absorption, mTOR signaling pathway, and the TCA cycle, suggesting a link between these mechanisms and CP. Overall, combined analyses of these transcriptomic and metabolomic results suggested that the MAPK, calcium, PI3K-Akt, Wnt, and mTOR signaling pathways are particularly important pathways enriched in the palatal cleft under conditions of atRA exposure. Together, these integrated transcriptomic and metabolomic approaches provided new evidence with respect to the mechanisms underlying altered MEPM cells proliferation and signal transduction associated with atRA-induced CP, revealing a possible link between oxidative stress and these pathological changes.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaixing Song
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoxu Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yujing Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
6
|
Li X, Xu X, Liu L, Tian Y, Gao Y, Zhu G, Lou S, Zhong W, Li D, Pan Y. lncRNA MIR31HG Regulates Proliferation and Migration by Targeting Matrix Gla Protein in Nonsyndromic Cleft Lip With or Without Cleft Palate. DNA Cell Biol 2023. [PMID: 37327028 DOI: 10.1089/dna.2022.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common craniofacial birth defect with complex etiologies. Recently, the dysregulation of long noncoding RNAs (lncRNAs) has been implicated in many developmental diseases, including NSCL/P. However, the functions and mechanisms of lncRNAs in NSCL/P have not been fully elucidated. In this study, we found that lncRNA MIR31HG in NSCL/P patients was significantly downregulated than that in healthy individuals (GSE42589, GSE183527). In addition, single nucleotide polymorphism rs58751040 in MIR31HG was nominally associated with NSCL/P susceptibility (odds ratio: 1.29, 95% confidence interval: 1.03-1.54, p = 4.93 × 10-2) through a case-control study (504 NSCL/P cases and 455 controls). Luciferase activity assay showed that the C allele of rs58751040 revealed a decreased transcription activity of MIR31HG than the G allele. Moreover, knockdown of MIR31HG promoted cell proliferation and migration in human oral keratinocytes and human embryonic palate mesenchyme. Bioinformatic analysis and cellular studies suggested that MIR31HG may confer susceptibility to risk of NSCL/P through matrix Gla protein (MGP) signaling. In summary, we identified a novel lncRNA involved in the development of NSCL/P.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Xinze Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Luwei Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yu Tian
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yue Gao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Guirong Zhu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Shu Lou
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Weijie Zhong
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
- Department of Stomatology, Medical Center of Soochow University, Suzhou, China
| | - Dandan Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
7
|
Zhang M, Zhou J, Ji Y, Shu S, Zhang M, Liang Y. LncRNA-NONMMUT100923.1 regulates mouse embryonic palatal shelf adhesion by sponging miR-200a-3p to modulate medial epithelial cell desmosome junction during palatogenesis. Heliyon 2023; 9:e16329. [PMID: 37251885 PMCID: PMC10208945 DOI: 10.1016/j.heliyon.2023.e16329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Cleft palate (CP) is a common neonatal craniofacial defect caused by the adhesion and fusion dysfunction of bilateral embryonic palatal shelf structures. Long non-coding RNA (lncRNA) is involved in CP formation with regulatory mechanism unknown. In this study, all-trans retinoic acid (ATRA) was used to induced cleft palate in embryonic mice as model group. The RNA-sequencing was performed to screen differentially expressed genes between the normal and model group on embryonic day 16.5, and the expression of LncRNA-NONMMUT100923.1 and miR-200a-3p, Cdsn was confirmed by RT-PCR and western blotting. Colony formation, CCK-8 and EDU assays were performed to measure cell proliferation and apoptosis on mouse embryonic palatal shelf (MEPS) epithelial cells in vitro. Fluorescence in situ hybridization (FISH) and dual luciferase activity assays was used to investigate the regulatory effect of LncRNA-NONMMUT100923.1 on miRNA and its target genes. Up-regulation of LncRNA-NONMMUT100923.1 and Cdsn while downregulation of miR-200a-3p was found in the model group. The sponging effects of LncRNA-NONMMUT100923 on miR-200a-3p and the target gene relations between Cdsn and miR-200a-3p was confirmed. Low expression of miR-200a-3p was related to the increased expressed levels of Cdsn and the proliferation of MEPS epithelial cells. Thus, a potential ceRNA regulatory network in which LncRNA-NONMMUT100923.1 regulates Cdsn expression by competitively binding to endogenous miR-200a-3p during palatogenesis, which may inhibit MEPS adhesion by preventing the disintegration of the desmosome junction in medial edge epithelium cells. These findings indicate the regulatory role of lncRNA and provides a potential direction for target gene therapy of CP.
Collapse
Affiliation(s)
- Ming Zhang
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jieyan Zhou
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yingwen Ji
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Mingjun Zhang
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yan Liang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563099, Guizhou, China
| |
Collapse
|
8
|
Seelan RS, Greene RM, Pisano MM. Role of lncRNAs and circRNAs in Orofacial Clefts. Microrna 2023; 12:171-176. [PMID: 38009000 DOI: 10.2174/2211536612666230524153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 11/28/2023]
Abstract
Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Huang W, Zhong W, He Q, Xu Y, Lin J, Ding Y, Zhao H, Zheng X, Zheng Y. Time-series expression profiles of mRNAs and lncRNAs during mammalian palatogenesis. Oral Dis 2022. [PMID: 35506257 DOI: 10.1111/odi.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Mammalian palatogenesis is a highly regulated morphogenetic process to form the intact roof of the oral cavity. Long noncoding RNAs (lncRNAs) and mRNAs participate in numerous biological and pathological processes, but their roles in palatal development and causing orofacial clefts (OFC) remain to be clarified. METHODS Palatal tissues were separated from ICR mouse embryos at four stages (E10.5, E13.5, E15, and E17). Then, RNA sequencing (RNA-seq) was used. Various analyses were performed to explore the results. Finally, hub genes were validated via qPCR and in situ hybridization. RESULTS Starting from E10.5, the expression of cell adhesion genes escalated in the following stages. Cilium assembly and ossification genes were both upregulated at E15 compared with E13.5. Besides, the expression of cilium assembly genes was also increased at E17 compared with E15. Expression patterns of three lncRNAs (H19, Malat1, and Miat) and four mRNAs (Cdh1, Irf6, Grhl3, Efnb1) detected in RNA-seq were validated. CONCLUSIONS This study provides a time-series expression landscape of mRNAs and lncRNAs during palatogenesis, which highlights the importance of processes such as cell adhesion and ossification. Our results will facilitate a deeper understanding of the complexity of gene expression and regulation during palatogenesis.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Wenjie Zhong
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yizhu Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowen Zheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
10
|
Liu X, Liu H, Wu Y, He Z, Shen L, Zhang H, Wan Z, Chen Y, Yue H, Zhang T, Gao S, Yu Z. The role of lncRNA Meg3 in the proliferation of all-trans retinoic acid-treated mouse embryonic palate mesenchymal cells involves the Smad pathway. Reprod Toxicol 2021; 104:1-7. [PMID: 34166781 DOI: 10.1016/j.reprotox.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022]
Abstract
Mesenchymal cell proliferation is critical for the growth of the palate shelf. All-trans retinoic acid (atRA), as well as pathways associated with TGF-β/Smad signaling, play crucial roles in the proliferation of mouse embryonic palate mesenchymal (MEPM) cells. We have found that MEPM-cell proliferation was regulated by atRA and exogenous TGF-β3 could significantly antagonize the atRA-mediated suppression of MEPM cell proliferation, which is closely associated with the regulation of TGF-β/Smad signaling pathway. The long non-coding RNA (lncRNA) MEG3 has been reported to activate TGF-β/Smad signaling, thereby regulating cellular proliferation, differentiation, and related processes. Here, we found that Meg3 expression increased significantly in atRA-treated MEPM cells while TGF-β3 treatment markedly inhibited Meg3 expression and antagonized the effect of atRA on Meg3. Moreover, Smad2 was found to interact directly with Meg3, and atRA treatment significantly enriched Meg3 in Smad2-immunoprecipitated samples. After Meg3 deletion, the effects of atRA on the proliferation of MEPM cells and TGF-β3-dependent protein expression were lost. Hence, we speculate that Meg3 has a role in the RA-induced suppression of MEPM cell proliferation by targeting Smad2 and thereby mediating TGF-β/Smad signaling inhibition.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Department of Medical Genetics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Shen
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haodi Yue
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Suhua Gao
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|