1
|
Fawzy MH, Moustafa YM, Khodeer DM, Saeed NM, El-Sayed NM. Doxepin as OCT2 inhibitor ameliorates inflammatory response and modulates PI3K/Akt signaling associated with cisplatin-induced nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03473-1. [PMID: 39400714 DOI: 10.1007/s00210-024-03473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Organic cationic transporter 2 (OCT2) was identified as the main transporter involved in the accumulation of cisplatin (CP) in the proximal tubular renal cells, resulting in nephrotoxicity. Doxepin (DOX) is a tricyclic agent with an inhibitory effect on OCT2. This study aimed to explore the possible mechanisms of the renoprotective role of DOX toward CP-induced nephrotoxicity. Rats were randomly divided into six groups: group 1, control; group 2, CP; groups 3, 4, and 5 were treated with graded doses of DOX (5, 10, and 20 mg/kg, respectively) intraperitoneally (ip) once daily for 10 consecutive days and group 6 was treated only with DOX (20 mg/kg). On the seventh day, a single injected dose of CP (10 mg/kg, ip) was given to the rats in groups 2-5. Seventy-two hours after CP injection, rats were sacrificed, and the kidneys were removed for histological and biochemical measurements. DOX ameliorated the CP-induced histopathological alterations. DOX significantly reduced the expression of OCT2, lipid peroxidation marker (MDA), and inflammatory cytokines, including TNF-α, IL-6, IL-1, IL-2, and IL-1β, and increased the activity of antioxidant enzymes. In addition, pre- and co-treatment with DOX significantly reduced the CP-mediated apoptotic effect by reducing the renal tissue expression of BAX and caspase-3 levels, upregulating the expression of Bcl-2, and modulating the phosphorylation of PI3K/Akt signaling cascade. DOX exerts a nephroprotective impact against CP-mediated nephrotoxicity via the inhibition of OCT2, suppression of inflammation, oxidative stress, and apoptotic markers, and modulation of PI3K/Akt signaling cascade.
Collapse
Affiliation(s)
- Mariam H Fawzy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Egypt
| | - Dina M Khodeer
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha M Saeed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Norhan M El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Mody H, Nair S, Rump A, Vaidya TR, Garrett TJ, Lesko L, Ait-Oudhia S. Identification of Novel and Early Biomarkers for Cisplatin-induced Nephrotoxicity and the Nephroprotective Role of Cimetidine using a Pharmacometabolomic-based Approach Coupled with In Vitro Toxicodynamic Modeling and Simulation. J Pharm Sci 2024; 113:268-277. [PMID: 37992870 DOI: 10.1016/j.xphs.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Cisplatin is widely used for the treatment of various types of cancer. However, cisplatin-induced nephrotoxicity (CIN) is frequently observed in patients receiving cisplatin therapy which poses a challenge in its clinical utility. Currently used clinical biomarkers for CIN are not adequate for early detection of nephrotoxicity, hence there is a need to identify potential early biomarkers in predicting CIN. In the current study, a combination of in vitro toxicodynamic (TD) modeling and untargeted global metabolomics approach was used to identify novel potential metabolite biomarkers for early detection of CIN. In addition, we investigated the protective role of cimetidine (CIM), an inhibitor of the organic cation transporter 2 (OCT2), in suppressing CIN. We first characterized the time-course of nephrotoxic effects of cisplatin (CIS) and the protective effects of CIM in a human pseudo-immortalized renal proximal tubule epithelial cell line (RPTEC), SA7K cell line. Secondly, we used a mathematical cell-level, in vitro TD modeling approach to quantitatively characterize the time-course effects of CIS and CIM as single agents and combination in SA7K cells. Based on the experimental and modeling results, we selected relevant concentrations of CIS and CIM for our metabolomics study. With the help of PCA (Principal Component Analysis) and PLS-DA (Projection to Latent Structure - Discriminate Analysis) analyses, we confirmed global metabolome changes for different groups (CIS, CIM, CIS+CIM vs control) in SA7K cells. Based on the criterion of a p-value ≤ 0.05 and a fold change ≥ 2 or ≤ 0.5, we identified 20 top metabolites that were significantly changed during the early phase i.e. within first 12 h of CIS treatment. Finally, pathway analysis was conducted that revealed the key metabolic pathways that were most impacted in CIN.
Collapse
Affiliation(s)
- Hardik Mody
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, USA
| | - Sreenath Nair
- Pharmaceutical Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adrian Rump
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, USA
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, USA
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| | - Lawrence Lesko
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, USA
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc, Rahway, NJ, USA.
| |
Collapse
|
3
|
Noorlander A, Wesseling S, Rietjens IMCM, van Ravenzwaay B. Predicting acute paraquat toxicity using physiologically based kinetic modelling incorporating in vitro active renal excretion via the OCT2 transporter. Toxicol Lett 2023; 388:30-39. [PMID: 37806368 DOI: 10.1016/j.toxlet.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Including active renal excretion in physiologically based kinetic (PBK) models can improve their use in quantitative in vitro- in vivo extrapolation (QIVIVE) as a new approach methodology (NAM) for predicting the acute toxicity of organic cation transporter 2 (OCT2) substrates like paraquat (PQ). To realise this NAM, kinetic parameters Vmax and Km for in vitro OCT2 transport of PQ were obtained from the literature. Appropriate scaling factors were applied to translate the in vitro Vmax to an in vivo Vmax. in vitro cytotoxicity data were defined in the rat RLE-6TN and L2 cell lines and the human A549 cell line. The developed PQ PBK model was used to apply reverse dosimetry for QIVIVE translating the in vitro cytotoxicity concentration-response curves to predicted in vivo toxicity dose-response curves after which the lower and upper bound benchmark dose (BMD) for 50% lethality (BMDL50 and BMDU50) were derived by applying BMD analysis. Comparing the predictions to the in vivo reported LD50 values resulted in a conservative prediction for rat and a comparable prediction for human showing proof of principle on the inclusion of active renal excretion and prediction of PQ acute toxicity for the developed NAM.
Collapse
Affiliation(s)
- Annelies Noorlander
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
4
|
Widjaja F, Alhejji Y, Yangchen J, Wesseling S, Rietjens IMCM. Physiologically-Based Kinetic Modeling Predicts Similar In Vivo Relative Potency of Senecionine N-Oxide for Rat and Human at Realistic Low Exposure Levels. Mol Nutr Food Res 2023; 67:e2200293. [PMID: 36478522 DOI: 10.1002/mnfr.202200293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/30/2022] [Indexed: 12/12/2022]
Abstract
SCOPE This study aims to determine if previously developed physiologically-based kinetic (PBK) model in rat can be modified for senecionine (SEN) and its N-oxide (SENO), and be used to investigate potential species differences between rat and human in relative potency (REP) of the N-oxide relative to the parent pyrrolizidine alkaloid (PA). METHODS AND RESULTS In vitro derived kinetic parameters including the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for SENO reduction and SEN clearance are used to define the PBK models. The rat model is validated with published animal data, and the toxicokinetic profiles of SEN from either orally-administered SENO or SEN are simulated. REP values of SENO relative to SEN amount to 0.84 and 0.89 in rat and human, respectively. CONCLUSION The REP value can be dose- and species-dependent, with the values for rat and human being comparable at low realistic exposure scenarios. In summary, PBK modeling serves as a valuable New Approach Methodology (NAM) tool for predicting REP values of PA-N-oxides and may actually result in more accurate REP values for human risk assessment than what would be defined using in vivo animal experiments.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.,Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Jamyang Yangchen
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.,Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu, 11002, Bhutan
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| |
Collapse
|
5
|
Jarzina S, Di Fiore S, Ellinger B, Reiser P, Frank S, Glaser M, Wu J, Taverne FJ, Kramer NI, Mally A. Application of the Adverse Outcome Pathway Concept to In Vitro Nephrotoxicity Assessment: Kidney Injury due to Receptor-Mediated Endocytosis and Lysosomal Overload as a Case Study. FRONTIERS IN TOXICOLOGY 2022; 4:864441. [PMID: 35516525 PMCID: PMC9061999 DOI: 10.3389/ftox.2022.864441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Application of adverse outcome pathways (AOP) and integration of quantitative in vitro to in vivo extrapolation (QIVIVE) may support the paradigm shift in toxicity testing to move from apical endpoints in test animals to more mechanism-based in vitro assays. Here, we developed an AOP of proximal tubule injury linking a molecular initiating event (MIE) to a cascade of key events (KEs) leading to lysosomal overload and ultimately to cell death. This AOP was used as a case study to adopt the AOP concept for systemic toxicity testing and risk assessment based on in vitro data. In this AOP, nephrotoxicity is thought to result from receptor-mediated endocytosis (MIE) of the chemical stressor, disturbance of lysosomal function (KE1), and lysosomal disruption (KE2) associated with release of reactive oxygen species and cytotoxic lysosomal enzymes that induce cell death (KE3). Based on this mechanistic framework, in vitro readouts reflecting each KE were identified. Utilizing polymyxin antibiotics as chemical stressors for this AOP, the dose-response for each in vitro endpoint was recorded in proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) in order to (1) experimentally support the sequence of key events (KEs), to (2) establish quantitative relationships between KEs as a basis for prediction of downstream KEs based on in vitro data reflecting early KEs and to (3) derive suitable in vitro points of departure for human risk assessment. Time-resolved analysis was used to support the temporal sequence of events within this AOP. Quantitative response-response relationships between KEs established from in vitro data on polymyxin B were successfully used to predict in vitro toxicity of other polymyxin derivatives. Finally, a physiologically based kinetic (PBK) model was utilized to transform in vitro effect concentrations to a human equivalent dose for polymyxin B. The predicted in vivo effective doses were in the range of therapeutic doses known to be associated with a risk for nephrotoxicity. Taken together, these data provide proof-of-concept for the feasibility of in vitro based risk assessment through integration of mechanistic endpoints and reverse toxicokinetic modelling.
Collapse
Affiliation(s)
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Division Molecular Biotechnology Aachen, Aachen, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Division Translational Medicine, ScreeningPort, Hamburg, Germany
| | - Pia Reiser
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Sabrina Frank
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Markus Glaser
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Jiaqing Wu
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Femke J. Taverne
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Host-microbe Interactions, Wageningen University, Wageningen, Netherlands
| | - Nynke I. Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Noorlander A, Zhang M, van Ravenzwaay B, Rietjens IMCM. Use of physiologically based kinetic modeling-facilitated reverse dosimetry to predict in vivo acute toxicity of tetrodotoxin in rodents. Toxicol Sci 2022; 187:127-138. [PMID: 35218365 PMCID: PMC9041554 DOI: 10.1093/toxsci/kfac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, the ability of a new in vitro/in silico quantitative in vitro–in vivo extrapolation (QIVIVE) methodology was assessed to predict the in vivo neurotoxicity of tetrodotoxin (TTX) in rodents. In vitro concentration–response data of TTX obtained in a multielectrode array assay with primary rat neonatal cortical cells and in an effect study with mouse neuro-2a cells were quantitatively extrapolated into in vivo dose–response data, using newly developed physiologically based kinetic (PBK) models for TTX in rats and mice. Incorporating a kidney compartment accounting for active renal excretion in the PBK models proved to be essential for its performance. To evaluate the predictions, QIVIVE-derived dose–response data were compared with in vivo data on neurotoxicity in rats and mice upon oral and parenteral dosing. The results revealed that for both rats and mice the predicted dose–response data matched the data from available in vivo studies well. It is concluded that PBK modeling-based reserve dosimetry of in vitro TTX effect data can adequately predict the in vivo neurotoxicity of TTX in rodents, providing a novel proof-of-principle for this methodology.
Collapse
Affiliation(s)
- Annelies Noorlander
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Mengying Zhang
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.,Experimental Toxicology and Ecology, BASF SE, Z 470, Ludwigshafen, 67056, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| |
Collapse
|
7
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
8
|
Physiologically based kinetic modelling predicts the in vivo relative potency of riddelliine N-oxide compared to riddelliine in rat to be dose dependent. Arch Toxicol 2021; 96:135-151. [PMID: 34669010 PMCID: PMC8748370 DOI: 10.1007/s00204-021-03179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are toxic plant constituents occurring often in their N-oxide form. This raises the question on the relative potency (REP) values of PA-N-oxides compared to the corresponding parent PAs. The present study aims to quantify the in vivo REP value of riddelliine N-oxide compared to riddelliine using physiologically based kinetic (PBK) modelling, taking into account that the toxicity of riddelliine N-oxide depends on its conversion to riddelliine by intestinal microbiota and in the liver. The models predicted a lower Cmax and higher Tmax for the blood concentration of riddelliine upon oral administration of riddelliine N-oxide compared to the Cmax and Tmax predicted for an equimolar oral dose of riddelliine. Comparison of the area under the riddelliine concentration–time curve (AUCRID) obtained upon dosing either the N-oxide or riddelliine itself revealed a ratio of 0.67, which reflects the in vivo REP for riddelliine N-oxide compared to riddelliine, and appeared to closely match the REP value derived from available in vivo data. The models also predicted that the REP value will decrease with increasing dose level, because of saturation of riddelliine N-oxide reduction by the intestinal microbiota and of riddelliine clearance by the liver. It is concluded that PBK modeling provides a way to define in vivo REP values of PA-N-oxides as compared to their parent PAs, without a need for animal experiments.
Collapse
|