1
|
Wang J, Yan P, Jia Y, Guo Z, Guo Y, Yin R, Wang L, Fan Z, Zhou Y, Yuan J, Yin R. Expression profiles of miRNAs in the lung tissue of piglets infected with Glaesserella parasuis and the roles of ssc-miR-135 and ssc-miR-155-3p in the regulation of inflammation. Comp Immunol Microbiol Infect Dis 2024; 111:102214. [PMID: 39002176 DOI: 10.1016/j.cimid.2024.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
MicroRNAs (miRNAs) have been shown to play an important regulatory role in the process of pathogenic infection. However, the miRNAs that regulate the pathogenic process of G. parasuis and their functions are still unknown. Here, high-throughput sequencing was used to quantify the expression of miRNA in piglet lung tissue after G. parasuis XX0306 strain infection. A total of 25 differentially expressed microRNAs (DEmiRNAs) were identified. GO and KEGG pathway enrichment analysis showed that many of the functions of genes that may be regulated by DEmiRNA are related to inflammatory response and immune regulation. Further studies found that ssc-miR-135 may promote the expression of inflammatory factors through NF-κB signaling pathway. Whereas, ssc-miR-155-3p inhibited the inflammatory response induced by G. parasuis, and its regulatory mechanism remains to be further investigated. This study provides a valuable reference for revealing the regulatory effects of miRNAs on the pathogenesis of G. parasuis. DATA AVAILABILITY: The datasets generated during the current study are not publicly available due to this study is currently in the ongoing research stage, and some of the data cannot be made public sooner yet, but are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China.
| | - Ping Yan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yongchao Jia
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhongbo Guo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ying Guo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ronglan Yin
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun 130062, China.
| | - Linxi Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zenglei Fan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuanyuan Zhou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jing Yuan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ronghuan Yin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Rath S, Hawsawi YM, Alzahrani F, Khan MI. Epigenetic regulation of inflammation: The metabolomics connection. Semin Cell Dev Biol 2024; 154:355-363. [PMID: 36127262 DOI: 10.1016/j.semcdb.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Epigenetic factors are considered the regulator of complex machinery behind inflammatory disorders and significantly contributed to the expression of inflammation-associated genes. Epigenetic modifications modulate variation in the expression pattern of target genes without affecting the DNA sequence. The current knowledge of epigenetic research focused on their role in the pathogenesis of various inflammatory diseases that causes morbidity and mortality worldwide. Inflammatory diseases are categorized as acute and chronic based on the disease severity and are regulated by the expression pattern of various genes. Hence, understanding the role of epigenetic modifications during inflammation progression will contribute to the disease outcomes and therapeutic approaches. This review also focuses on the metabolomics approach associated with the study of inflammatory disorders. Inflammatory responses and metabolic regulation are highly integrated and various advanced techniques are adopted to study the metabolic signature molecules. Here we discuss several metabolomics approaches used to link inflammatory disorders and epigenetic changes. We proposed that deciphering the mechanism behind the inflammation-metabolism loop may have immense importance in biomarkers research and may act as a principal component in drug discovery as well as therapeutic applications.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia.
| | - Faisal Alzahrani
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Embryonic Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
3
|
Chen W, Chang Y, Sun C, Xu M, Dong M, Zhao N, Wang Y, Zhang J, Xu N, Liu W. A novel circular RNA circNLRP3 alleviated ricin toxin-induced TNF-α production through sponging miR-221-5p. Toxicon 2023; 224:107046. [PMID: 36702354 DOI: 10.1016/j.toxicon.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Acting as microRNA (miRNA) sponges, circular RNAs (circRNAs) have been discovered to be critical modulators of inflammatory processes. Ricin Toxin (RT) is highly toxic to mammalian cells and low doses of RT can induce acute inflammation. However, current researches on the underlying mechanism and function of circRNA/miRNA network in RT-induced inflammation are limited. Previously, we found miR-221-5p was aberrant and associated with the inflammation of RT induction. In this study, based on the circRNA high-throughput sequencing (circRNA-seq), we obtained a novel circRNA termed circNLRP3 and revealed that circNLRP3 can sponge miR-221-5p, release its target mRNA A20, and further suppress NF-κB signaling pathway to alleviated RT-induced TNF-α production. Our findings elucidated a possible mechanistic link between the circNLRP3/miR-221-5p/A20 axis and RT-induced inflammatory response, which may broaden our understanding of RT poisoning.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, PR China
| | - Ying Chang
- Jilin Medical University, Jilin, 132013, Jilin, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Meng Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Na Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, Jilin, PR China.
| | - Wensen Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China.
| |
Collapse
|
4
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
5
|
Zhao N, Yu H, Xi Y, Dong M, Wang Y, Sun C, Zhang J, Xu N, Liu W. MicroRNA-221-5p promotes [Korcheva, 2007 #167] via PI3K/Akt signaling pathway by targeting COL4a5. Toxicon 2022; 212:11-18. [DOI: 10.1016/j.toxicon.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
6
|
Identification of a lncRNA/circRNA-miRNA-mRNA network to explore the effects of ricin toxin-induced inflammation in RAW264.7 cells. Toxicon 2021; 203:129-138. [PMID: 34673083 DOI: 10.1016/j.toxicon.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Ricin toxin (RT) is a ribosome-inactivating protein derived from the beans of the castor oil plant. Our previous studies have reported that RT can induce the production of inflammatory cytokines and cause inflammatory injury in RAW264.7 cells. In order to explore the various biological processes that long noncoding RNA (lncRNA), circular RNA (circRNA) and micro RNA (miRNA) as endogenous non-coding RNAs (ceRNAs) may participate in the pro-inflammatory mechanism, RT (20 ng/mL) treated and normal RAW264.7 cells were firstly sequenced by RNA-seq. By comparing the differentially expressed genes, we obtained 10 hub genes and enriched the inflammatory-related signaling pathways. Based on our results, we concluded a lncRNA/circRNA-miRNA-mRNA network. Finally, we verified the key genes and pathways by qRT-PCR, WB and ELISA. From the experiment results, an opening MAPK signaling pathway in TNF signaling pathway via TNFR2 was found involved in RT-induced inflammation. This work provides a reference for searching for ceRNA targets or therapeutic drugs in RT-induced inflammatory injury in the future.
Collapse
|