1
|
Wang J, Chu H, Wang Z, Wang X, Liu X, Song Z, Liu F. In vivo study revealed pro-tumorigenic effect of CMTM3 in hepatocellular carcinoma involving the regulation of peroxisome proliferator-activated receptor gamma (PPARγ). Cell Oncol (Dordr) 2023; 46:49-64. [PMID: 36284038 DOI: 10.1007/s13402-022-00733-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To clarify the ambiguity of the function of CMTM3 in the development of hepatocellular carcinoma (HCC) and explore its molecular mechanism. METHODS The Cmtm3-KO C57BL/6 mouse strain was established using CRISPR-Cas9. Acute liver damage and HCC models were induced by peritoneal injection of 100 or 25 mg/kg.BW N-Nitrosodiethylamine (DEN) to male mice. Liver function and histology were evaluated by blood serum levels of AST and ALT, and HE staining. Gene and protein expression in liver tissues was investigated by RNA-seq, RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. Protein-protein interactions were studied by STRING and topological measures. The mRNA expression of CMTM3 and PPARs and patient survival were analyzed using the UALCAN database. RESULTS Global knockout of Cmtm3 in KO mice was successfully confirmed. Cmtm3 knockout alleviated DEN-induced acute damage to liver histological integrity and liver function, reduced DNA damage and apoptosis, and also caused a significantly reduced number (WT: 8.7 ± 5.5 vs. KO: 2.7 ± 3.1, P = 0.0394) and total size of tumors (WT: 130.9 ± 181.8 mm2 vs. KO: 9.3 ± 11.5 mm2, P = 0.026) in the liver. Mechanistically, Cmtm3 knockout resulted in reduced expression and inactivation of Pparγ and its downstream lipid metabolism genes (e.g. Adipoq) upon DEN intoxication. CMTM3 and PPARγ were both overexpressed in HCC, and higher levels of both genes were associated with worse overall survival of HCC patients. CONCLUSION This study clarified the pro-tumorigenesis role of CMTM3 in HCC in vivo, possibly through the upregulation of PPARγ and activation of the PPAR pathway.
Collapse
Affiliation(s)
- Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Hongjin Chu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Zhixin Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Xuebo Wang
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xuexia Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Zhan Song
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Fujun Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China.
| |
Collapse
|
2
|
Huc T, Jurkowska H, Wróbel M, Jaworska K, Onyszkiewicz M, Ufnal M. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. Exp Biol Med (Maywood) 2017; 243:96-106. [PMID: 29130338 DOI: 10.1177/1535370217741869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hydrogen sulfide, a toxic gas, at low concentrations is also a biological mediator in animals. In the colon, hydrogen sulfide is produced by intestinal tissues and gut sulfur bacteria. Gut-derived molecules undergo liver metabolism. Portal hypertension is one of the most common complications contributing to the high mortality in liver cirrhosis. We hypothesized that the colon-derived hydrogen sulfide may affect portal blood pressure. Sprague-Dawley rats were maintained either on tap water (controls) or on water solution of thioacetamide to produce liver cirrhosis (CRH-R). Hemodynamics were measured after administration of either saline or Na2S, a hydrogen sulfide donor, into (1) the colon, (2) the portal vein, or (3) the femoral vein. Expression of enzymes involved in hydrogen sulfide metabolism was measured by RT-PCR. CRH-R showed a significantly higher portal blood pressure but a lower arterial blood pressure than controls. Saline did not affect hemodynamic parameters. In controls, intracolonic hydrogen sulfide decreased arterial blood pressure and portal blood flow but increased portal blood pressure. Similarly, hydrogen sulfide administered into the portal vein decreased arterial blood pressure but increased portal blood pressure. In contrast, hydrogen sulfide administered into the systemic vein decreased both arterial and portal blood pressures. CRH-R showed significantly greater responses to hydrogen sulfide than controls. CRH-R had a significantly higher liver concentration of hydrogen sulfide but lower expression of rhodanese, an enzyme converting hydrogen sulfide to sulfate. In conclusion, colon-administered hydrogen sulfide increases portal blood pressure while decreasing the systemic arterial blood pressure. The response to hydrogen sulfide is more pronounced in cirrhotic rats which show reduced hydrogen sulfide liver metabolism. Therefore, colon-derived hydrogen sulfide may be involved in the regulation of portal blood pressure, and may contribute to portal hypertension. Impact statement Accumulating evidence suggests that gut-derived molecules affect the control of the circulatory system. Mechanisms controlling liver circulation have been profoundly studied; however, the effects of gut bacteria-derived molecules on portal blood pressure have not been established. In the colon, hydrogen sulfide is produced by intestinal tissues and gut sulfur bacteria. We found that colon-administered hydrogen sulfide increases portal blood pressure while decreasing the systemic arterial blood pressure. The hemodynamic response to hydrogen sulfide was more pronounced in cirrhotic rats which showed reduced hydrogen sulfide liver metabolism, i.e. lower expression of rhodanese, an enzyme converting hydrogen sulfide to sulfate. We propose that colon-derived hydrogen sulfide may affect the regulation of portal and arterial blood pressures and may be involved in portal hypertension.
Collapse
Affiliation(s)
- Tomasz Huc
- 1 Department of Experimental Physiology and Pathophysiology, 37803 Laboratory of the Centre for Preclinical Research , Medical University of Warsaw, Warsaw 02-097, Poland
| | - Halina Jurkowska
- 2 Chair of Medical Biochemistry, 37799 Jagiellonian University Medical College, Krakow 31-034, Poland
| | - Maria Wróbel
- 2 Chair of Medical Biochemistry, 37799 Jagiellonian University Medical College, Krakow 31-034, Poland
| | - Kinga Jaworska
- 1 Department of Experimental Physiology and Pathophysiology, 37803 Laboratory of the Centre for Preclinical Research , Medical University of Warsaw, Warsaw 02-097, Poland
| | - Maksymilian Onyszkiewicz
- 1 Department of Experimental Physiology and Pathophysiology, 37803 Laboratory of the Centre for Preclinical Research , Medical University of Warsaw, Warsaw 02-097, Poland
| | - Marcin Ufnal
- 1 Department of Experimental Physiology and Pathophysiology, 37803 Laboratory of the Centre for Preclinical Research , Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
3
|
Fukawa A, Kobayashi O, Yamaguchi M, Uchida M, Hosono A. Bovine milk-derived α-lactalbumin prevents hepatic fibrosis induced by dimethylnitrosamine via nitric oxide pathway in rats. Biosci Biotechnol Biochem 2017; 81:1941-1947. [PMID: 28752795 DOI: 10.1080/09168451.2017.1356215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was designed to evaluate the hepatoprotective potential of α-lactalbumin (αLA) against dimethylnitrosamine (DMN)-induced toxic insults in the rat liver. The liver damage was induced in rats by the repeated administration of DMN (10 mg/kg, i.p.) on three consecutive days per week for three weeks. The rats were maintained on either a standard AIN-93 M or αLA-enriched diet starting one week before the DMN injection until the termination of the experiment. The DMN treatment produced a progressive increase in the plasma markers (aspartate aminotransferase, alanine aminotransferase, total bililbin, hyarulonic acid, and matrix metalloproteinase-2) in 28 days after the first DMN injection. Dietary treatment with αLA significantly reduced the DMN-induced damage toward normalcy. NG-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, significantly attenuated the hepatoprotective effect of αLA. These findings show that αLA has a marked suppressive effect on hepetic fibrosis through a nitric oxide-mediated mechanism.
Collapse
Affiliation(s)
- Akika Fukawa
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Orie Kobayashi
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Makoto Yamaguchi
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Masayuki Uchida
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Akira Hosono
- b College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| |
Collapse
|