1
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
2
|
Lin TC, Soorneedi A, Guan Y, Tang Y, Shi E, Moore MD, Liu Z. Turicibacter fermentation enhances the inhibitory effects of Antrodia camphorata supplementation on tumorigenic serotonin and Wnt pathways and promotes ROS-mediated apoptosis of Caco-2 cells. Front Pharmacol 2023; 14:1203087. [PMID: 37663253 PMCID: PMC10469317 DOI: 10.3389/fphar.2023.1203087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Diet-induced obesity has been shown to decrease the abundance of Turicibacter, a genus known to play a role in the serotonin signaling system, which is associated with colorectal tumorigenesis, making the presence of Turicibacter potentially influential in the protection of intestinal tumorigenesis. Recently, Antrodia camphorata (AC), a medicinal fungus native to Taiwan, has emerged as a promising candidate for complementary and alternative cancer therapy. Small molecules and polysaccharides derived from AC have been reported to possess health-promoting effects, including anti-cancer properties. Methods: Bacterial culture followed with cell culture were used in this study to determine the role of Turicibacter in colorectal tumorigenesis and to explore the anti-cancer mechanism of AC with Turicibacter fermentation. Results: Turicibacter fermentation and the addition of AC polysaccharide led to a significant increase in the production of nutrients and metabolites, including α-ketoglutaric acid and lactic acid (p < 0.05). Treatment of Turicibacter fermented AC polysaccharide was more effective in inhibiting serotonin signaling-related genes, including Tph1, Htr1d, Htr2a, Htr2b, and Htr2c (p < 0.05), and Wnt-signaling related protein and downstream gene expressions, such as phospho-GSK-3β, active β-catenin, c-Myc, Ccnd1, and Axin2 (p < 0.05). Additionally, it triggered the highest generation of reactive oxygen species (ROS), which activated PI3K/Akt and MAPK/Erk signaling and resulted in cleaved caspase-3 expression. In comparison, the treatment of AC polysaccharide without Turicibacter fermentation displayed a lesser effect. Discussion: Our findings suggest that AC polysaccharide effectively suppresses the tumorigenic serotonin and Wnt-signaling pathways, and promotes ROS-mediated apoptosis in Caco-2 cells. These processes are further enhanced by Turicibacter fermentation.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anand Soorneedi
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yingxue Guan
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Eleanor Shi
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Su YH, Wu JS, Dai YZ, Chen YT, Lin YX, Tzeng YM, Liao JW. Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. TOXICS 2023; 11:547. [PMID: 37368647 DOI: 10.3390/toxics11060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Antrocin is a novel compound isolated from Antrodia cinnamomea, and is classified as a sesquiterpene lactone. The therapeutic efficacy of antrocin has been studied, and it has shown an antiproliferative effect on various cancers. The aim of this study was to evaluate the anti-oxidant activity, potential genotoxicity, and oral toxicity of antrocin. Ames tests with five different strains of Salmonella typhimurium, chromosomal aberration tests in CHO-K1 cells, and micronucleus tests in ICR mice were conducted. The results of anti-oxidant capacity assays showed that antrocin has great anti-oxidant activity and is a moderately strong antimutagenic agent. In the results of the genotoxicity assays, antrocin did not show any mutagenic potential. In the 28-day oral toxicity test, Sprague Dawley rats were gavaged with 7.5 or 37.5 mg/kg of antrocin for 28 consecutive days. In addition, 7.5 mg/kg sorafenib, an anti-cancer drug, was used as a positive control for toxicity comparison. At the end of the study, antrocin did not produce any toxic effects according to hematology, serum chemistry, urine analysis, or histopathological examinations. According to the results of the genotoxicity and 28-day oral toxicity study, antrocin, at a dose of 37.5 mg/kg, did not cause adverse effects and can be a reference dose for therapeutic agents in humans.
Collapse
Affiliation(s)
- Yi-Hui Su
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Shuan Wu
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402, Taiwan
| | - Yan-Zhen Dai
- Research Center for Animal Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402, Taiwan
| | - Yan-Xiu Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Liao YT, Huang KW, Chen WJ, Lai TH. A Botanical Drug Extracted From Antrodia cinnamomea: A First-in-human Phase I Study in Healthy Volunteers. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:274-284. [PMID: 35512765 DOI: 10.1080/07315724.2022.2032868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
LEAC-102 is an emerging drug extracted from the medicinal fungus Antrodia cinnamomea (AC), which is traditionally used to ameliorate fatigue and liver disorders arising from excessive alcohol consumption. AC has been used as a health product with an immunomodulatory function, but its anticancer effect has not been applied in clinical therapy as a drug. This first-in-human study examined the safety and tolerability of LEAC-102 as a new drug in healthy adults. This standard 3 + 3 dose-escalation study included 18 participants administered LEAC-102 at doses of 597.6, 1195.2, 1792.8, 2390.4, or 2988 mg/day for 1 month plus 7 days of safety follow-up. The maximum planned dose was 2988 mg. Dose-limiting toxicity (DLT) was monitored from the start of LEAC-102 administration up to the final visit. The dose of LEAC-102 was escalated to the subsequent cohort as long as there was no DLT in the previous cohort. Tolerability, clinical status, safety (by laboratory parameters), and adverse event occurrence were documented weekly during the treatment and 1 week after the conclusion of the treatment. All clinical biochemistry profiles were in the normal range, and no serious adverse effects were observed. The maximum tolerated dose of LEAC-102 was determined to be 2988 mg/day because one participant experienced urticaria. Additionally, our exploratory objectives revealed that LEAC-102 significantly elevated natural killer, natural killer T, and dendritic cells in a dose-dependent manner, activated effector T cells, and upregulated programmed cell death-1 expression. The outcomes suggested that LEAC-102 was well tolerated and safe in healthy adults and exhibited potential immunomodulatory function. Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2022.2032868 .
Collapse
Affiliation(s)
- Yu-Tso Liao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Biomedical Park Hospital, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kai-Wen Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan.,Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei City, Taiwan
| | | | | |
Collapse
|
5
|
Chen YJ, Tsao YC, Ho TC, Puc I, Chen CC, Perng GC, Lien HM. Antrodia cinnamomea Suppress Dengue Virus Infection through Enhancing the Secretion of Interferon-Alpha. PLANTS (BASEL, SWITZERLAND) 2022; 11:2631. [PMID: 36235496 PMCID: PMC9573221 DOI: 10.3390/plants11192631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Dengue caused by dengue virus (DENV) is a mosquito-borne disease. Dengue exhibits a wide range of symptoms, ranging from asymptomatic to flu-like illness, and a few symptomatic cases may develop into severe dengue, leading to death. However, there are no effective and safe therapeutics for DENV infections. We have previously reported that cytokine expression, especially inflammatory cytokines, was altered in patients with different severities of dengue. Antrodia cinnamomea (A. cinnamomea) is a precious and endemic medical mushroom in Taiwan. It contains unique chemical components and exhibits biological activities, including suppressing effects on inflammation and viral infection-related diseases. According to previous studies, megakaryocytes can support DENV infection, and the number of megakaryocytes is positively correlated with the viral load in the serum of acute dengue patients. In the study, we investigated the anti-DENV effects of two ethanolic extracts (ACEs 1-2) and three isolated compounds (ACEs 3-5) from A. cinnamomea on DENV infection in Meg-01 cells. Our results not only demonstrated that ACE-3 and ACE-4 significantly suppressed DENV infection, but also reduced interleukin (IL)-6 and IL-8 levels. Moreover, the level of the antiviral cytokine interferon (IFN)-α was also increased by ACE-3 and ACE-4 in Meg-01 cells after DENV infection. Here, we provide new insights into the potential use of A. cinnamomea extracts as therapeutic agents against DENV infection. However, the detailed mechanisms underlying these processes require further investigation.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Cian Tsao
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Irwin Puc
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chia-Chang Chen
- School of Management, Feng Chia University, Taichung 40724, Taiwan
| | - Guey-Chuen Perng
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Taichung 43302, Taiwan
| |
Collapse
|
6
|
Liu SC, Wu TY, Hsu TH, Lai MN, Wu YC, Ng LT. Chemical Composition and Chronic Toxicity of Disc-Cultured Antrodia cinnamomea Fruiting Bodies. TOXICS 2022; 10:587. [PMID: 36287867 PMCID: PMC9610047 DOI: 10.3390/toxics10100587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Antrodia cinnamomea (AC) is a popular fungus for use as folk medicine in health maintenance and disease prevention and treatment. Disc culture is a novel technique for producing AC fruiting bodies. This study aimed to investigate the bioactive components and toxicological properties of disc-cultured AC fruiting body powders (ACP) in rats. The HPLC technique was used to quantify the composition of bioactive triterpenoids in ACP. Toxicological properties were evaluated on male and female Sprague-Dawley rats receiving ACP orally at 200, 600, and 1000 mg/kg body weight for 90 days; the control group received only distilled water. The results show that ACP contained seven important AC index compounds, namely antcins A, B, C, K, and H, dehydrosulphurenic acid, and dehydroeburicoic acid. At the tested doses, oral ACP administration for 90 days caused no mortality, adverse effects on general health, body and organ weights, and food intake. Furthermore, no significant variations were observed in hematological and biochemical parameters among either sex of ACP-treated and control animals. An histopathological examination of vital organs showed no significant structural changes in organs, even in high-dose ACP-treated animals. This study indicated that ACP contained the major bioactive triterpenoids of AC fruiting bodies, and its no-observed-adverse-effect level (NOAEL) was 1000 mg/kg/day, about 20 times the recommended daily intake.
Collapse
Affiliation(s)
- Shou-Chou Liu
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua County 51591, Taiwan
| | - Tung-Ying Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua County 51591, Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd., Nantou 54245, Taiwan
| | - Yang-Chang Wu
- College of Chinese Medicine, China Medical University, Taichung 406040, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Turla E, Knutsen HK. Safety of freeze-dried mycelia of Antrodia camphorata as a novel food pursuant to regulation (EU) 2015/2283. EFSA J 2022; 20:e07380. [PMID: 35784815 PMCID: PMC9240966 DOI: 10.2903/j.efsa.2022.7380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on freeze-dried mycelia of Antrodia camphorata as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is produced by solid-state cultivation from tissue cultures derived from the fungus Antrodia camphorata. The applicant intends to market the NF in food supplements at a maximum dose of 990 mg per day. The target population is the general population. The NF mainly consists of carbohydrates, proteins and fats, and it contains numerous constituents, such as β-glucans, antroquinonol and triterpenoids. Taking into account the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. There are no concerns regarding genotoxicity of the NF. Based on a 90-day repeated dose toxicity study and a prenatal developmental toxicity study performed with the NF, the Panel derives a safe level of 16.5 mg/kg body weight per day. The Panel concludes that the NF, freeze-dried mycelia of Antrodia camphorata, is safe at the proposed use level for individuals aged 14 years and above.
Collapse
|
8
|
Polat Yemiş G, Delaquis P. Natural Compounds With Antibacterial Activity Against Cronobacter spp. in Powdered Infant Formula: A Review. Front Nutr 2020; 7:595964. [PMID: 33330595 PMCID: PMC7731913 DOI: 10.3389/fnut.2020.595964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the genus Cronobacter are opportunistic foodborne pathogens capable of causing severe infections in neonates, the elderly and immunocompromised adults. The majority of neonatal infections have been linked epidemiologically to dehydrated powdered infant formulas (PIFs), the majority of which are manufactured using processes that do not ensure commercial sterility. Unfortunately, the osmotolerance, desiccation resistance, mild thermotolerance and wide-ranging minimum, optimum and maximum growth temperatures of Cronobacter spp. are conducive to survival and/or growth during the processing, reconstitution and storage of reconstituted PIFs. Consequently, considerable research has been directed at the development of alternative strategies for the control of Cronobacter spp. in PIFs, including approaches that employ antimicrobial compounds derived from natural sources. The latter include a range of phytochemicals ranging from crude extracts or essential oils derived from various plants (e.g., thyme, cinnamon, clove, marjoram, cumin, mint, fennel), to complex polyphenolic extracts (e.g., muscadine seed, pomegranate peel, olive oil, and cocoa powder extracts), purified simple phenolic compounds (e.g., carvacrol, citral, thymol, eugenol, diacetyl, vanillin, cinnamic acid, trans-cinnamaldehyde, ferulic acid), and medium chain fatty acids (monocaprylin, caprylic acid). Antimicrobials derived from microbial sources (e.g., nisin, other antibacterial peptides, organic acids, coenzyme Q0) and animal sources (e.g., chitosan, lactoferrin, antibacterial peptides from milk) have also been shown to exhibit antibacterial activity against the species. The selection of antimicrobials for the control of Cronobacter spp. requires an understanding of activity at different temperatures, knowledge about their mode of action, and careful consideration for toxicological and nutritional effects on neonates. Consequently, the purpose of the present review is to provide a comprehensive summary of currently available data pertaining to the antibacterial effects of natural antimicrobial compounds against Cronobacter spp. with a view to provide information needed to inform the selection of compounds suitable for control of the pathogen during the manufacture or preparation of PIFs by end users.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Sakarya University, Serdivan, Turkey
| | - Pascal Delaquis
- Summerland Research and Development Research Centre, Agriculture and AgriFood Canada, Summerland, BC, Canada
| |
Collapse
|
9
|
Lin LH, Chi CH, Zhang XH, Chen YJ, Wang MF. Immunomodulatory Effects of Fruiting Body Extract and Solid-State-Cultivated Mycelia of Taiwanofungus camphoratus. Nutrients 2019; 11:nu11092256. [PMID: 31546903 PMCID: PMC6770431 DOI: 10.3390/nu11092256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/19/2023] Open
Abstract
Taiwanofungus camphoratus is a rare and valuable medicinal mushroom indigenous to Taiwan. It has traditionally been used to promote good health. This study aimed to explore the immunomodulatory effects of “Leader Deluxe Taiwanofungus camphoratus capsule” (LDAC). LDAC is a healthy food product composed of fruiting body extract and solid-state-cultivated mycelia of T. camphoratus. Two complementary studies were performed. In the first, LDAC was orally administered to BABL/c female mice for 6 weeks as part of a non-specific immune study. In the second, mice were treated with LDAC for 8 weeks and immunized with ovalbumin (OVA) in a specific immune study. LDAC increased the growth of splenic immune cells and enhanced the activity of macrophages and natural killer cells. It increased the levels of interleukin (IL)-2, interferon (IFN)-γ, serum immunoglobulin (Ig)G, and OVA-IgG, and decreased the levels of IL-4, IL-5, tumor necrosis factor (TNF)-α, serum IgE, and OVA-IgE. Thus, the findings of this study strongly supported the idea that LDAC possesses immunomodulatory activity.
Collapse
Affiliation(s)
- Liang-Hung Lin
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
- Division of Allergy, Immunology & Rheumatology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tanzi Dist., Taichung 42743, Taiwan.
| | - Ching-Hsin Chi
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Xiao-Han Zhang
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Ying-Ju Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, College of Humanities & Social Sciences, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| |
Collapse
|
10
|
Wang C, Zhang W, Wong JH, Ng T, Ye X. Diversity of potentially exploitable pharmacological activities of the highly prized edible medicinal fungus Antrodia camphorata. Appl Microbiol Biotechnol 2019; 103:7843-7867. [PMID: 31407039 DOI: 10.1007/s00253-019-10016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Antrodia camphorata, also known as A. cinnamomea, is a precious medicinal basidiomycete fungus endemic to Taiwan. This article summarizes the recent advances in research on the multifarious pharmacological effects of A. camphorata. The mushroom exhibits anticancer activity toward a large variety of cancers including breast, cervical, ovarian, prostate, bladder, colorectal, pancreatic, liver, and lung cancers; melanoma; leukemia; lymphoma; neuroblastoma; and glioblastoma. Other activities encompass antiinflammatory, antiatopic dermatitis, anticachexia, immunoregulatory, antiobesity, antidiabetic, antihyperlipidemic, antiatherosclerotic, antihypertensive, antiplatelet, antioxidative, antiphotodamaging, hepatoprotective, renoprotective, neuroprotective, testis protecting, antiasthmatic, osteogenic, osteoprotective, antiviral, antibacterial, and wound healing activities. This review aims to provide a reference for further development and utilization of this highly prized mushroom.
Collapse
Affiliation(s)
- Caicheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weiwei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiujuan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
11
|
Tavassoli M, Afshari A, Arsene AL, Mégarbane B, Dumanov J, Paoliello MMB, Tsatsakis A, Carvalho F, Hashemzaei M, Karimi G, Rezaee R. Toxicological profile of Amanita virosa - A narrative review. Toxicol Rep 2019; 6:143-150. [PMID: 30705830 PMCID: PMC6348736 DOI: 10.1016/j.toxrep.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
Globally, mushroom poisoning leads to a considerable number of deaths annually. However, no definite antidote has been introduced yet. A mushroom-poisoning outbreak occurred in 2018 in Iran; this overview presents geographical distribution of Amanita virosa along with studies reporting A. virosa poisonings. Also, main toxins of A. virosa, their toxicity mechanisms and pharmacological management of mushroom-poisoned individuals are presented.
Mushrooms account for a part of human diet due to their exquisite taste and protein content as well as their promising health effects unveiled by scientific research. Toxic and non-toxic mushrooms frequently share considerable morphological similarities, which mislead the collectors/consumers, resulting in mycotoxicity. Numerous mushroom species are considered “poisonous” as they produce dangerous toxins. For instance, members of the genus Amanita, especially A. phalloides, A. virosa and A. verna, are responsible for severe and even life-threatening noxious consequences. Globally, mushroom poisoning is a crucial healthcare issue as it leads to a considerable number of deaths annually. However, no definite antidote has been introduced to treat this poisoning. The present article discusses the characteristics of A. virosa in terms of epidemiology, mechanisms of toxicity, poisoning features and management.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Andree Letiţia Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956, Bucharest, Romania
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Josef Dumanov
- Mycological Institute USA EU, SubClinical Research Group, Sparta, NJ 07871, United States
| | - Monica Maria Bastos Paoliello
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina - UEL, Londrina, Paraná, Brazil.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Chiu CY, Chiu HC, Liu SH, Lan KC. Prenatal developmental toxicity study of strontium citrate in Sprague Dawley rats. Regul Toxicol Pharmacol 2018; 101:196-200. [PMID: 30529436 DOI: 10.1016/j.yrtph.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/15/2022]
Abstract
In this study, the pregnant female Sprague Dawley (SD) rats were used to evaluate the potential toxicological effect of strontium citrate, a dietary supplement, on embryo-fetal development. Strontium citrate at doses of 0 mg/kg, 680 mg/kg, 1360 mg/kg, and 2267 mg/kg was administrated orally by gavage to rats at day 6 to day 15 of pregnancy. Each group contained 20 pregnant rats. On the 20th day of gestation, rats was anesthetized and dissected by cesarean section. The appearance, internal organs, gravid uterus weight, embryo implantation number, and implantation loss rate in maternal rats of each group did not reveal any lesions. In fetuses, there were no statistical differences in the fetus weight, sex ratio, embryo resorption number, stillbirth number, and fetal visceral examination in all testing groups compared to the control group. However, in 2267 mg/kg strontium citrate group, the fetuses showed the statistical differences in the anomalies of the bones and eyes compared to the control group. These findings indicate that high-dose strontium citrate possesses an adverse effect on embryonic and fetal development in SD rats. The no observed adverse effect level (NOAEL) of strontium citrate for prenatal development toxicity in SD rats may be regarded as 1360 mg/kg/day.
Collapse
Affiliation(s)
- Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsien-Chun Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
13
|
Hobbs CA, Saigo K, Koyanagi M, Hayashi SM. Magnesium stearate, a widely-used food additive, exhibits a lack of in vitro and in vivo genotoxic potential. Toxicol Rep 2017; 4:554-559. [PMID: 29090120 PMCID: PMC5655391 DOI: 10.1016/j.toxrep.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022] Open
Abstract
Magnesium stearate is widely used in the production of dietary supplement and pharmaceutical tablets, capsules and powders as well as many food products, including a variety of confectionery, spices and baking ingredients. Although considered to have a safe toxicity profile, there is no available information regarding its potential to induce genetic toxicity. To aid safety assessment efforts, magnesium sulfate was evaluated in a battery of tests including a bacterial reverse mutation assay, an in vitro chromosome aberration assay, and an in vivo erythrocyte micronucleus assay. Magnesium stearate did not produce a positive response in any of the five bacterial strains tested, in the absence or presence of metabolic activation. Similarly, exposure to magnesium stearate did not lead to chromosomal aberrations in CHL/IU Chinese hamster lung fibroblasts, with or without metabolic activation, or induce micronuclei in the bone marrow of male CD-1 mice. These studies have been used by the Japanese government and the Joint FAO/WHO Expert Committee on Food Additives in their respective safety assessments of magnesium stearate. These data indicate a lack of genotoxic risk posed by magnesium stearate consumed at current estimated dietary exposures. However, health effects of cumulative exposure to magnesium via multiple sources present in food additives may be of concern and warrant further evaluation.
Collapse
Key Words
- 2AA, 2-aminoanthracene
- 9AA, 9-aminoacridine hydrochloride monohydrate
- ADI, acceptable daily intake
- AF-2, 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide
- DMSO, dimethyl sulfoxide
- DNA damage
- Dietary supplement
- EFSA, European Food Safety Authority
- ENNG, N-ethyl-N'-nitro-N-nitrosoguanidine
- FAO, Food and Agriculture Organization of the United Nations
- FDA, U.S. Food and Drug Administration
- Food additive
- GLP, Good Laboratory Practice
- Genotoxicity
- JECFA, Joint FAO/WHO Expert Committee on Food Additives
- Joint FAO/WHO Expert Committee on Food Additives (JECFA)
- MMC, mitomycin C
- MN, micronucleus or micronuclei
- MN-PCE, micronucleated polychromatic erythrocyte(s)
- Magnesium stearate
- OECD, Organization for Economic Cooperation and Development
- PCE, polychromatic erythrocyte(s)
- WHO, World Health Organization
Collapse
Affiliation(s)
- Cheryl A. Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Kazuhiko Saigo
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura-cho, Kagoshima-City, Kagoshima 891-1394, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|