1
|
Afifi AH, Sweelam HTM, El-Shamarka ME, Orban HA, Elesawy WH, Nagata M, Shimizu K, Abd-Alla HI. Chemical composition and studying the possible neuroprotective effect of iridoids-rich fraction from Pentas lanceolata leaves using rotenone model of Parkinson's disease in mice. Inflammopharmacology 2024; 32:3953-3971. [PMID: 38963536 DOI: 10.1007/s10787-024-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Parkinsonism is an age-related neurodegenerative illness that affects motor coordination leading to loss of dopaminergic neurons. Many medications are used for the treatment of Parkinson's disease but are only symptomatic and have a limited effect on the progression of this ailment. Therefore, bioactive compounds which derived from plants have been examined for their ability to improve the neuronal damage and cell death happened in parkinsonian patients. In this study the iridoids-rich fraction isolated from Pentas lanceolata (PIRF) leaves was investigated for its phytoconstituents. Seven iridoids (1-7) and one flavonol diglycoside (8) were isolated, and their chemical structures were achieved by 1H and 13C nuclear magnetic resonance and ESI-MS spectral data. Compound 1 (6β,7β-epoxy-8-epi-splendoside) and 5 (gaertneroside) were isolated for the first time from Pentas genus as well as compound 8 (kaempferol-3-O-robinobioside). The current study aims to investigate the possible anti-parkinsonian effect of PIRF using a rotenone model of Parkinsonism in mice. Behavioural tests (wirehanging, stair and wooden-walking tests) were done to examine the motor coordination in mice after treatment. Biochemical and histopathological examinations for brain striatum in different groups were also evaluated. Results revealed that rotenone-treated mice had poor motor functions described by depletion of dopamine and Ach levels, a significant increase in proinflammatory cytokines, IL-1B, TNF-α and Mcp-1 and oxidative biomarkers with subsequent reduction in antioxidant mediators. Disorganization of striatum, degenerated neurocytes, slight vacuolation, shrunken neurons with pyknotic nuclei and apoptotic cells are displayed by histopathological examinations. Treatment with PIRF ameliorates the neurodegeneration-induced by rotenone in the brain of mice. The anti-parkinsonian effect of PIRF could be attributed to their bioactive constituents of iridoids.
Collapse
Affiliation(s)
- Ahmed H Afifi
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, 12622, Giza, Egypt
| | - Heba-Tollah M Sweelam
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, 12622, Giza, Egypt
| | - Marwa E El-Shamarka
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, 12622, Giza, Egypt
| | - Hisham A Orban
- Biochemistry Department, Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, 12622, Giza, Egypt
| | - Wessam H Elesawy
- Pharmacology and Toxicology Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6 October, Egypt
| | - Maki Nagata
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kuniyoshi Shimizu
- Pharmacology and Toxicology Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6 October, Egypt
- Kyushu University Institute for Asian and Oceanian Studies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, 12622, Giza, Egypt.
| |
Collapse
|
2
|
Bustos-Salgado P, Andrade-Carrera B, Domínguez-Villegas V, Noé V, Mallandrich M, Colom H, Calpena-Campmany A, Garduño-Ramírez ML. In Vitro Approaches to Explore the Anticancer Potential of One Natural Flavanone and Four Derivatives Loaded in Biopolymeric Nanoparticles for Application in Topical Delivery Treatments. Pharmaceutics 2023; 15:1632. [PMID: 37376079 DOI: 10.3390/pharmaceutics15061632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing number of skin cancer cases worldwide and the adverse side effects of current treatments have led to the search for new anticancer agents. In this present work, the anticancer potential of the natural flavanone 1, extracted from Eysenhardtia platycarpa, and four flavanone derivatives 1a-d obtained by different reactions from 1 was investigated by an in silico study and through cytotoxicity assays in melanoma (M21), cervical cancer (HeLa) cell lines and in a non-tumor cell line (HEK-293). The free compounds and compounds loaded in biopolymeric nanoparticles (PLGA NPs 1, 1a-d) were assayed. A structure-activity study (SAR) was performed to establish the main physicochemical characteristics that most contribute to cytotoxicity. Finally, ex vivo permeation studies were performed to assess the suitability of the flavanones for topical administration. Results revealed that most of the studied flavanones and their respective PLGA NPs inhibited cell growth depending on the concentration; 1b should be highlighted. The descriptors of the energetic factor were those that played a more important role in cellular activity. PLGA NPs demonstrated their ability to penetrate (Qp of 17.84-118.29 µg) and be retained (Qr of 0.01-1.44 g/gskin/cm2) in the skin and to exert their action for longer. The results of the study suggest that flavanones could offer many opportunities as a future anticancer topical adjuvant treatment.
Collapse
Affiliation(s)
- Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Berenice Andrade-Carrera
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Calle Iztaccihuatl S/N, Col. Los Volcanes, Cuernavaca 62350, Morelos, Mexico
| | - Valeri Domínguez-Villegas
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
| | - Véronique Noé
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Helena Colom
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain
| | - Ana Calpena-Campmany
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
3
|
Karimi M, Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Amifostine inhibits acrylamide-induced hepatotoxicity by inhibiting oxidative stress and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:662-668. [PMID: 37275759 PMCID: PMC10237170 DOI: 10.22038/ijbms.2023.67815.14837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Acrylamide (ACR) is a toxic chemical agent that can induce hepatotoxicity through different mechanisms including oxidative stress and apoptosis. Amifostine is an important hepatoprotective and anti-oxidant compound. In this research, the hepatoprotective effect of amifostine on ACR-induced hepatotoxicity in rats has been investigated. Materials and Methods Male Wistar rats were randomly divided into 7 groups, including: 1. Control group, 2. ACR (50 mg/kg, 11 days, IP), 3-5. ACR+ amifostine (25, 50, 100 mg/kg, 11 days, IP), 6. ACR+ N-acetyl cysteine (NAC) (200 mg/kg, 11 days, IP), and 7. Amifostine (100 mg/kg, 11 days, IP). At the end of the injection period, animals' liver samples were collected to determine the content of glutathione (GSH), malondialdehyde (MDA), and apoptotic proteins (B-cell lymphoma 2 (Bcl2), Bcl-2-associated X protein (Bax), and cleaved caspase-3. Serum samples were also collected to measure alanine transaminase (ALT) and aspartate transaminase (AST) levels. Results Administration of ACR increased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and decreased GSH content compared with the control group. The administration of amifostine with ACR decreased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and increased GSH content compared with the ACR group. Receiving NAC along with ACR reversed the alterations induced by ACR. Conclusion This study shows that pretreatment with amifostine can reduce ACR-induced toxicity in the liver tissue of rats. Since oxidative stress is one of the most important mechanisms in ACR toxicity, amifostine probably reduces the toxicity of ACR by increasing the anti-oxidant and anti-apoptotic capacity of the hepatic cells.
Collapse
Affiliation(s)
- Mostafa Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
5
|
Ghasemzadeh Rahbardar M, Cheraghi Farmad H, Hosseinzadeh H, Mehri S. Protective effects of selenium on acrylamide-induced neurotoxicity and hepatotoxicity in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1041-1049. [PMID: 34804421 PMCID: PMC8591759 DOI: 10.22038/ijbms.2021.55009.12331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Objective(s): Acrylamide (ACR), has wide uses in different industries. ACR induced several toxicities including neurotoxicity and hepatotoxicity. The probable protective effects of selenium on ACR-induced neurotoxicity and hepatotoxicity in rats were evaluated. Materials and Methods: Male Wistar rats were studied for 11 days in 8 groups: 1. Control, 2. ACR (50 mg/kg, IP), 3-5. ACR+ selenium (0.2, 0.4, 0.6 mg/kg, IP), 6. ACR+ the most effective dose of selenium (0.6 mg/kg, IP) three days after ACR administration, 7. ACR+ vitamin E (200 mg/kg IP, every other day) 8. Selenium (0.6 mg/kg IP). Finally, behavioral tests were done. The levels of malondialdehyde (MDA), glutathione (GSH), Bcl-2, Bax and caspase 3 proteins in liver and cerebral cortex tissues were measured. Also, the amount of albumin, total protein, alanine transaminase (ALT) and aspartate transaminase (AST) enzymes were determined in serum. Results: ACR caused the severe motor impairment, increased MDA level and decreased GSH content, enhanced Bax/Bcl-2 ratio and caspase 3 proteins in brain and liver tissues. Besides, the level of AST was elevated while the total serum protein and albumin levels were decreased. Administration of selenium (0.6 mg/kg) (from the first day of the experiment and the third day) significantly recovered locomotor disorders, increased GSH content, and reduced MDA level. Also, selenium decreased Bax/Bcl-2 ratio and caspase 3 levels in brain and liver tissues. Conclusion: The oxidative stress and apoptosis pathways have important roles in neurotoxicity and hepatotoxicity of ACR. Selenium significantly reduced ACR-induced toxicity through inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide‐induced neurotoxicity and hepatotoxicity in rats. Phytother Res 2020; 34:3262-3272. [DOI: 10.1002/ptr.6774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Foroutanfar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Marzyeh Kamyar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
7
|
Farag MA, Abib B, Ayad L, Khattab AR. Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chem 2020; 331:127306. [PMID: 32593794 DOI: 10.1016/j.foodchem.2020.127306] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Sweet and bitter oranges are two of the most commercially-important fruit with a total world production of 75.4 Mt, well-recognized for their unique sensory characters in addition to multiple nutritive and therapeutic attributes due to their highly-valued bioactive ingredients. Hence, their differential qualitative/quantitative phytochemical make-ups are presented for better utilization as therapeutic agents. Sweet orange exhibits therapeutic applications as being effective anti-diabetic, anti-obesity, and hypocholesterolemic agents. Whereas, for anti-osteoporotic products and intestinal dysbiosis treatment, bitter orange is more preferred. Moreover, the review recapitulates on different valorization practices of citrus bio-wastes and utilization of their bioactives as therapeutic agents and in functional food industry. Sweet orange waste functions as a fat replacer and preservative to increase food shelf life with better organoleptic attributes than bitter orange. The detailed action mechanism and safety of Citrus bioactives, as well as processing technologies to further improve its effects are posed as future research perspectives.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| | - Bishoy Abib
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Laila Ayad
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| |
Collapse
|
8
|
Sun R, Chen W, Cao X, Guo J, Wang J. Protective Effect of Curcumin on Acrylamide-Induced Hepatic and Renal Impairment in Rats: Involvement of CYP2E1. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20910548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As a chemical extensively used in industrial areas and formed during heating of carbohydrate-rich foods and tobacco, acrylamide (ACR) has been demonstrated to exert a variety of systemic toxic effects including hepatotoxicity and nephrotoxicity. In the present study, we investigated the effect of curcumin, a natural polyphenolic compound in a popular spice known as turmeric, on the hepatic and renal impairment caused by ACR exposure to 40 mg/kg for 4 weeks in rats. The administration of curcumin at doses of 50 and 100 mg/kg to ACR-intoxicated rats significantly decreased the serum levels of alanine transaminase, aspartate transaminase, creatinine, and urea; improved the histological changes of liver and kidney caused by ACR; reduced the number of apoptotic cells; as well as relieved ACR-induced hepatic and renal oxidative stress. Moreover, curcumin inhibited the CYP2E1 overexpression induced by ACR in the liver and kidney tissues. Therefore, curcumin could be applied as a potential strategy for the intervention of ACR-induced systemic toxicity. The inhibition of CYP2E1 might be involved in the protection of curcumin against ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Rui Sun
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Wenhui Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Xiaolu Cao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| |
Collapse
|
9
|
Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: A multi-biomarker approach. Food Chem Toxicol 2020; 138:111190. [PMID: 32068001 DOI: 10.1016/j.fct.2020.111190] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023]
Abstract
Acrylamide (ACR) is a heat-induced carcinogen substance that is found in some foods due to cooking or other thermal processes. The aim of present study was to assess the probable protective effects of morin against ACR-induced hepatorenal toxicity in rats. The rats were treated with ACR (38.27 mg/kg b.w., p.o.) alone or with morin (50 and 100 mg/kg b.w., p.o.) for 10 consecutive days. Morin treatment attenuated the ACR-induced liver and kidney tissue injury by diminishing the serum AST, ALP, ALT, urea and creatinine levels. Morin increased activities of SOD, CAT and GPx and levels of GSH, and suppressed lipid peroxidation in ACR induced tissues. Histopathological changes and immunohistochemical expressions of p53, EGFR, nephrin and AQP2 in the ACR-induced liver and kidney tissues were decreased after administration of morin. In addition, morin reversed the changes in levels of apoptotic, autophagic and inflammatory parameters such as caspase-3, bax, bcl-2, cytochrome c, beclin-1, LC3A, LC3B, p38α MAPK, NF-κB, IL-1β, IL-6, TNF-α and COX-2 in the ACR-induced toxicity. Morin also affected the protein levels by regulating the PI3K/Akt/mTOR signaling pathway and thus alleviated ACR-induced apoptosis and autophagy. Overall, these findings may shed some lights on new approaches for the treatment of ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
|
10
|
Hamza RZ, Al-Motaan SE, Malik N. Protective and Antioxidant Role of Selenium Nanoparticles and Vitamin C Against Acrylamide Induced Hepatotoxicity in Male Mice. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.664.674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Parathodi Illam S, Hussain A, Elizabeth A, Narayanankutty A, Raghavamenon AC. Natural combination of phenolic glycosides from fruits resists pro-oxidant insults to colon cells and enhances intrinsic antioxidant status in mice. Toxicol Rep 2019; 6:703-711. [PMID: 31372348 PMCID: PMC6661281 DOI: 10.1016/j.toxrep.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/30/2019] [Accepted: 07/14/2019] [Indexed: 01/24/2023] Open
Abstract
A combination of fresh fruits adequately supplying required nutrients is likely to have better health benefits by virtue of the synergistic/additive effect of its natural constituents. With this view and aiming to obtain phenolic glycosides in combination, fresh apple, grape, orange, pomegranate, and sapota fruit juices were combined and lyophilized. An aqueous extract of this fruit combination (AEFC) had polyphenols as a major constituent (47.36 μg GAE/mL) and LC–MS analysis documented the presence of cyanidin and pallidol 3-O-glucosides, phloridzin, delphinidin-3-O-rutinoside, kaempferol-3-O-pentoside, quercetin-3-O-rutinoside, trans-caffeic acid. Corroborating this, AEFC exhibited significant DPPH and superoxide radical scavenging activities (IC50values 43.63 and 49.01 μg/mL) and protected colon epithelial cells (HCT-15) against H2O2 and AAPH induced cell death by 40 and 72.62% and buthionine sulfoximine (BSO) induced GSH depletion by 52.43%. In normal Swiss albino mice, administration of AEFC for over 30 days improved hepatic and renal GPx, SOD, and catalase activities and GSH levels. The study thus suggests the combinatorial effects of natural phenolic glycosides from fruits in resisting oxidative insults and associated disease pathology.
Collapse
Affiliation(s)
| | - Ashif Hussain
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680 555 Kerala, India
| | - Anu Elizabeth
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680 555 Kerala, India
| | | | | |
Collapse
|
12
|
Kalantari A, Salimi A, Kalantari H, Ebrahimi Broojeni J, Rashidi I, Raesi Vanani A, Bácskay I. The hepatoprotective effect of livergol microemulsion preparation (nanoparticle) against bromobenzene induced toxicity in mice. Toxicol Rep 2019; 6:444-448. [PMID: 31193476 PMCID: PMC6529715 DOI: 10.1016/j.toxrep.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Livergol (LG), which is the extract of Silybum marianum and commonly known as milk thistle possess hepatoprotective effect. Orally administered LG significantly suppresses Bromobenzene (BB)-induced increases in serum activity of enzymes AST, ALT, ALP. Treatment with LG has improved hepatic damages due to BB severe degeneration and vacuolation of hepatocytes. Based on the results the efficacy of LG in MEs showed better drug solubility and permeability which lead to improve drug absorption among different biological membranes. The hepatoprotective effect of this formulation against BB toxicity has been conducted through the control release, high diffusion and absorption rates and improve and increase in oral bioavailability of active pharmaceutical agents.
Livergol (LG), which is the extract of Silybum marianum and commonly known as milk thistle possess hepatoprotective effect and have got licensed for sale in Iran and other countries. LG was evaluated for its capacity to counteract the toxic effects of bromobenzene (BB) on mouse liver. The bioactive component of this plant is known to reinforce naturally occurring liver function through antioxidant activity, the stimulation of bile production and regeneration by the liver organ, resulting in enhanced protection against toxicants, hepatitis, and cirrhosis. The major bioactive components of this product are the flavonolignan ssilibinin, silidianin, silicristin, and isosilibinin. Mice were treated for 10 days with daily gavage of microemulsions (MEs), into which 0–400 mg/kg LG was dispersed. 0.36 ml/kg BB was injected intraperitoneally (ip) to each animal on day 10, followed by sacrifice on day 11, and histological evaluation of hematoxylin-eosin (HE)‐stained liver tissue samples, afterwards followed by evaluation liver enzymes level, aminotransferase (AST), alanine aminotransaminase (ALT) and alkaline phosphatase (ALP) activities. Significant suppression of BB-mediated damage to liver tissue, and increased in AST, ALT, and ALP level was observed to occur dose-responsively with LG administration, suggesting a use for LG as a chemoprotectant for persons chronically exposed to industrial solvents.
Collapse
Affiliation(s)
- Azin Kalantari
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Debrecen Health Science Center, Debrecen, Hungary
| | - Anayatollah Salimi
- Nanotechnology Research Center, Department of Pharmaceutics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jalal Ebrahimi Broojeni
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iran Rashidi
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Raesi Vanani
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ildikó Bácskay
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Debrecen Health Science Center, Debrecen, Hungary
| |
Collapse
|