1
|
Guha S, Talukdar D, Mandal GK, Mukherjee R, Ghosh S, Naskar R, Saha P, Murmu N, Das G. Crude extract of Ruellia tuberosa L. flower induces intracellular ROS, promotes DNA damage and apoptosis in triple negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118389. [PMID: 38821138 DOI: 10.1016/j.jep.2024.118389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruellia tuberosa L. (Acanthaceae) is a weed plant traditionally used in folklore medicine as a diuretic, anti-hypertensive, anti-pyretic, anti-cancerous, anti-diabetic, analgesic, and gastroprotective agent. It has been previously reported that R. tuberosa L. is enriched with various flavonoids, exhibiting significant cytotoxic potential in various cancer models but a detailed study concerning its molecular mechanism is yet to be explored. AIM OF THE STUDY Exploring and validating R. tuberosa L. flower methanolic extract (RTME) as an anti-cancerous agent as per traditional usage with special emphasis on multi-drug resistant human triple-negative breast cancer (TNBC) and investigating the possible signaling networks and regulatory pathways involved in it. MATERIALS AND METHODS In this study, RTME was prepared using methanol, and phytochemical analysis was performed through GC-MS. Then, the extract was tested for its anti-cancer potential through in-vitro cytotoxicity assay, clonogenic assay, wound healing assay, ROS generation assay, cell cycle arrest, apoptotic nuclear morphology study, cellular apoptosis study, mitochondrial membrane potential (MMP) alteration study, protein, and gene expressions alteration study. In addition, toxicological status was evaluated in female Balb/C mice, and to check the receptor-ligand interactions, in-silico molecular docking was also conducted. RESULTS Several phytochemicals were found within RTME through GC-MS, which have been already reported to act as ROS inductive, DNA damaging, cell cycle arresting, and apoptotic agents against cancer cells. Moreover, RTME was found to exhibit significant in-vitro cytotoxicity along with a reduction in colony formation, and inhibition of cell migratory potential. It also induced intracellular ROS, promoted G0/G1 cell cycle arrest, caused mitochondrial membrane potential (MMP) alteration, and promoted cell death. The Western blot and qRT-PCR data revealed that RTME promoted the intrinsic pathway of apoptosis. Furthermore, blood parameters and organ histology on female Balb/C mice disclosed the non-toxic nature of RTME. Finally, an in-silico molecular docking study displayed that the three identified lead phytochemicals in RTME show strong receptor-ligand interactions with the anti-apoptotic Bcl-2 and give a clue to the possible molecular mechanism of the RTME extract. CONCLUSIONS RTME is a potential source of several phytochemicals that have promising therapeutic potential against TNBC cells, and thus could further be utilized for anti-cancer drug development.
Collapse
Affiliation(s)
- Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India; Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Gautam Kumar Mandal
- IQ City Medical College Hospital, IQ City Road, Durgapur, 713206, West Bengal, India.
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Srestha Ghosh
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| |
Collapse
|
2
|
Sarkar S, Modak D, Roy SK, Biswas A, Islam M, Baishya R, Bose S, Georrge JJ, Bhattacharjee S. In silico, in vitro, and in vivo acute and sub-acute toxicity profiling of whole plant methanol extract of Equisetum diffusum D. Don from the sub-Himalayan West Bengal, India, having ethnobotanical uses. BMC Complement Med Ther 2024; 24:324. [PMID: 39215267 PMCID: PMC11365236 DOI: 10.1186/s12906-024-04606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Equisetum diffusum D. Don commonly known as 'Himalayan horsetail', has been traditionally used in the treatment of back pain, bone fracture and dislocation, and arthritis by various tribal communities of India. Our previous study confirmed the anti-inflammatory efficacy of the plant through in silico, in vitro, and in vivo model studies. Therefore, the current research is focused on safety dose evaluation for the first-time of the whole-plant methanol extract (EDME) of E. diffusum through appropriate in silico, in vitro, and in vivo approaches. METHOD The whole plant, along with its rhizomes, was collected, and the methanol extract was prepared. The in silico ADMET study was performed to predict the pharmacokinetics profile and toxicity of all the identified phyto-compounds of EDME previously screened by GC-MS study. In vitro cytotoxicity study of EDME was performed using two cell lines: kidney (HEK293) and liver (Huh7) cell lines. The in vivo toxicity study of EDME was validated by the acute toxicity (OECD 423, 2002) and sub-acute toxicity assays (OECD 407, 2008) in the Wistar Albino rat model. RESULTS The in silico ADMET study of all 47 bioactives predicted good pharmacokinetic and low toxicity profiles. In vitro cytotoxicity showed higher IC50 values of EDME viz., 672 ± 15.7 μg/mL and 1698 ± 6.54 μg/mL for both kidney (HEK293) and liver (Huh7) cell lines, respectively, which were considered as low-toxic. Based on acute oral toxicity, the LD50 value of the extract was considered "non-toxic" up to a feeding range of 2000 mg/kg of body weight. The regular consumption of the extract for an extended period (28 days) was also qualified as safe based on the body and organ weight, hematological, biochemical, and histoarchitecture results in the sub-acute toxicity assay. CONCLUSION The detailed in silico, in vitro, in vivo (acute and sub-acute oral toxicity) studies gave us a new insight to the safety dose evaluation of Equisetum diffusum, which may serve as a reliable documentation for undertaking the experimental validation of the ethnobotanical uses of the plant which would help in the field of drug development for the treatment of inflammation related complications.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Debabrata Modak
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudipta Kumar Roy
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Anupam Biswas
- Chemical Science and Technology Division, Pharmacology Lab, Natural Products Chemistry Group, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Mafidul Islam
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Rinku Baishya
- Chemical Science and Technology Division, Pharmacology Lab, Natural Products Chemistry Group, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Soumen Bhattacharjee
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
3
|
Kozhantayeva A, Tursynova N, Kolpek A, Aibuldinov Y, Tursynova A, Mashan T, Mukazhanova Z, Ibrayeva M, Zeinuldina A, Nurlybayeva A, Iskakova Z, Tashenov Y. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals (Basel) 2024; 17:996. [PMID: 39204101 PMCID: PMC11357188 DOI: 10.3390/ph17080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The study investigates the phytochemical profile, antioxidant capacity, and antimicrobial activities of ethanol (ChL-EtOH) and ethyl acetate (ChL-EtOAc) extracts from Chamaenerion latifolium L. (ChL) harvested in Kazakhstan. The ChL-EtOH extract exhibited higher total phenolic (267.48 ± 3.44 mg GAE/g DE) and flavonoid content (24.18 ± 1.06 mg QE/g DE) compared to ChL-EtOAc. HPLC-UV-ESI/MS identified key phenolic acids and flavonoids, including gallic acid, chlorogenic acid, and quercetin 3-glucoside. FT-IR analysis confirmed the presence of characteristic functional groups. Antioxidant assays revealed strong DPPH scavenging and FRAP activities, with ChL-EtOH showing superior results (IC50 = 21.31 ± 0.65 μg/mL and 18.13 ± 0.15 μg/mL, respectively). Additionally, ChL-EtOH displayed notable antimicrobial efficacy against Gram-positive and Gram-negative bacteria, as well as the fungal strain Candida albicans. These findings suggest that ethanol extraction is more efficient for isolating bioactive compounds from ChL, underscoring its potential for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Akmaral Kozhantayeva
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Nurgul Tursynova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Ainagul Kolpek
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yelaman Aibuldinov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Arailym Tursynova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Togzhan Mashan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Zhazira Mukazhanova
- Department of Chemistry, Graduate School of IT and Natural Sciences, East Kazakhstan University Named after S. Amanzholov, Ust-Kamenogorsk 010008, Kazakhstan;
| | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh.Yessenov, Aktau 130000, Kazakhstan;
| | - Aizhan Zeinuldina
- Department of General and Biological Chemistry, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan;
| | - Zhanar Iskakova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yerbolat Tashenov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| |
Collapse
|
4
|
Acute toxicity of aqueous extract of Ambrosia arborescens Mill. on biochemical and histopathological parameters in rats. Toxicol Res 2021; 38:225-233. [PMID: 35419274 PMCID: PMC8960535 DOI: 10.1007/s43188-021-00106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
Medicinal plants play an important role in the management of various diseases, so their use has become widespread. However, in some cases the population uses plant species regardless of the toxicity they may possess. The objective of this study was to evaluate the acute toxicity of aqueous extract from the leaves of Ambrosia arborescens Mill. on the biochemical and histopathological parameters of albino Holtzman rats. To do this, the leaves of A. arborescens were collected in the province of Julcan, La Libertad Region-Peru. OECD (Organisation for Economic Cooperation and Development) guideline 423 was conducted, forming experimental groups of 10 animals each one (5 males and 5 females): Group I (Control), which received 2 mL physiological saline solution (SSF 0.9%), Groups II and III (A. arborescens-300 and A. arborescens-2000), which were given the aqueous extract leaves of A. arborescens in a single dose of 300 and 2000 mg/kg/day, respectively. On the 14th day of exposure, biochemical (creatinine, ALT and AST) and histopathological parameters were measured. The results show that the aqueous extract of A. arborescens at the dose of 2000 mg/kg produces an increase in biochemical parameters which is related to histopathological analysis of liver and renal tissue with mild congestion. The study concludes that the aqueous extract leaves of A. arborescens has a LD50 greater than 2000 mg/kg and produces mild congestion in kidneys and liver, but showed no significant toxicological changes in the other albino Holtzman rats organs.
Collapse
|