1
|
Zerrouki H, Hamieh A, Hadjadj L, Rolain JM, Baron SA. The effect of combinations of a glyphosate-based herbicide with various clinically used antibiotics on phenotypic traits of Gram-negative species from the ESKAPEE group. Sci Rep 2024; 14:21006. [PMID: 39251613 PMCID: PMC11383965 DOI: 10.1038/s41598-024-68968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
The emission of glyphosate and antibiotic residues from human activities threatens the diversity and functioning of the microbial community. This study examines the impact of a glyphosate-based herbicide (GBH) and common antibiotics on Gram-negative bacteria within the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli). Ten strains, including type and multidrug-resistant strains for each species were analysed and eight antibiotics (cefotaxime, meropenem, aztreonam, ciprofloxacin, gentamicin, tigecycline, sulfamethoxazole-trimethoprim, and colistin) were combined with the GBH. While most combinations yielded additive or indifferent effects in 70 associations, antagonistic effects were observed with ciprofloxacin and gentamicin in five strains. GBH notably decreased the minimum inhibitory concentration of colistin in eight strains and displayed synergistic activity with meropenem against metallo-β-lactamase (MBL)-producing strains. Investigation into the effect of GBH properties on outer membrane permeability involved exposing strains to a combination of this GBH and vancomycin. Results indicated that GBH rendered strains sensitive to vancomycin, which is typically ineffective against Gram-negative bacteria. Furthermore, we examined the impact of GBH in combination with three carbapenem agents on 14 strains exhibiting varying carbapenem-resistance mechanisms to assess its effect on carbapenemase activity. The GBH efficiently inhibited MBL activity, demonstrating similar effects to EDTA (ethylenediaminetetraacetic acid). Chelating effect of GBH may have multifaceted impacts on bacterial cells, potentially by increasing outer membrane permeability and inactivating metalloenzyme activity.
Collapse
Affiliation(s)
- Hanane Zerrouki
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Aïcha Hamieh
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Linda Hadjadj
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| | - Sophie Alexandra Baron
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
2
|
Ignácio ADC, Guerra AMDR, de Souza-Silva TG, Carmo MAVD, Paula HADA. Effects of glyphosate exposure on intestinal microbiota, metabolism and microstructure: a systematic review. Food Funct 2024; 15:7757-7781. [PMID: 38994673 DOI: 10.1039/d4fo00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glyphosate is the most commercialized herbicide in Brazil and worldwide, and this has become a worrying scenario in recent years. In 2015 glyphosate was classified as potentially carcinogenic by the World Health Organization, which opened avenues for numerous debates about its safe use regarding non-target species' health, including humans. This review aimed to observe the impacts of glyphosate and its formulations on the gut microbiota, as well as on the gut microstructure and animal metabolism. A systematic review was conducted based on the PRISMA recommendations, and the search for original articles was performed in Pubmed/Medline, Scopus and Web of Science databases. The risk of bias in the studies was assessed using the SYRCLE strategy. Our findings revealed that glyphosate and its formulations are able to induce intestinal dysbiosis by altering bacterial metabolism, intestinal permeability, and mucus secretion, as well as causing damage to the microvilli and the intestinal lumen. Additionally, immunological, enzymatic and genetic changes were also observed in the animal models. At the metabolic level, damage was observed in lipid and energy metabolism, the circulatory system, cofactor and vitamin metabolism, and replication, repair, and translation processes. In this context, we pointed out that the studies revealed that these alterations, caused by glyphosate-based herbicides, can lead to intestinal and systemic diseases, such as Crohn's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Araújo Vieira do Carmo
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| | - Hudsara Aparecida de Almeida Paula
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Boughattas I, Vaccari F, Zhang L, Bandini F, Miras-Moreno B, Missawi O, Hattab S, Mkhinini M, Lucini L, Puglisi E, Banni M. Co-exposure to environmental microplastic and the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) induce distinctive alterations in the metabolome and microbial community structure in the gut of the earthworm Eisenia andrei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123213. [PMID: 38158010 DOI: 10.1016/j.envpol.2023.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are recognized as emergent pollutants and have become a significant environmental concern, especially when combined with other contaminants. In this study, earthworms, specifically Eisenia andrei, were exposed to MPs (at a concentration of 10 μg kg-1 of soil), herbicide 2,4-D (7 mg kg-1 of soil), and a combination of the two for 7 and 14 days. The chemical uptake in the earthworms was measured, and the bacterial and archaeal diversities in both the soil and earthworm gut were analyzed, along with the metabolomic profiles. Additionally, data integration of the two omics approaches was performed to correlate changes in gut microbial diversity and the different metabolites. Our results demonstrated that earthworms ingested MPs and increased 2,4-D accumulation. More importantly, high-throughput sequencing revealed a shift in microbial diversity depending on single or mixture exposition. Metabolomic data demonstrated an important modulation of the metabolites related to oxidative stress, inflammatory system, amino acids synthesis, energy, and nucleic acids metabolism, being more affected in case of co-exposure. Our investigation revealed the potential risks of MPs and 2,4-D herbicide combined exposure to earthworms and soil fertility, thus broadening our understanding of MPs' toxicity and impacts on terrestrial environments.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Omayma Missawi
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia
| | - Sabrine Hattab
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| |
Collapse
|
4
|
Du Q, Ren X, Ma X, Wang D, Song X, Hu H, Wu C, Shan Y, Ma Y, Ma Y. Impact of a glyphosate-based herbicide on the longevity, fertility, and transgenerational effects on Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21845-21856. [PMID: 38400979 DOI: 10.1007/s11356-024-32601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Glyphosate-based herbicides (GBHs) are common herbicide formulations used in the field and are increasingly used worldwide with the widespread cultivation of herbicide-tolerant genetically modified crops. As a result, the risk of arthropod exposure to GBH is increasing rapidly. Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) is a common predatory natural enemy in agroecosystems, which is exposed to GBH (Roundup®) while preying on pests. To identify and characterize the potential effects of GBH on C. pallens, the life tables of C. pallens larvae and adults fed with GBH were constructed. Moreover, the effects of GBH treatment on the expression of genes involved in insulin signalling in adults were analyzed using qRT-PCR. The results showed that GBH treatment altered the pupal period and preadult stage of C. pallens larvae. However, it did no effect on longevity, fecundity, and population parameters and two insulin receptor genes (InR1, InR2), a serine/threonine kinase (Akt), an extracellular-signal-regulated kinase (erk), and vitellogenin (Vg1) expression of C. pallens. Adults feeding on GBH significantly altered development, longevity, and differences in the mean generation time of the F0 generation. However, GBH feeding only minimally influenced the growth and population parameters of the F1 generation. In addition, InR1, InR2, erk, and Vg1 expression in the F0 generation were downregulated on the fifth day of feeding on GBH. Furthermore, the expression levels of InR1, InR2, Akt, erk, and Vg1 in C. pallens decreased with the increase of GBH concentration, although the expression levels returned to control levels on the tenth day. Overall, the consumption of the GBH by larvae and adults of C. pallens had minimal effect on the growth and population parameters of C. pallens. The findings of this study can provide a reference for elucidating the environmental risks of GBH, guiding the optimal use of glyphosate in agricultural practices in the future.
Collapse
Affiliation(s)
- Qiankun Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiangliang Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dan Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xianpeng Song
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongyan Hu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Changcai Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yongpan Shan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yajie Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
5
|
Parri S, Campani T, Conti V, Cai G, Romi M, Casini S, Zari R, Caldini F, Marsili L. New olive-pomace fertilizer tested with a 2-tiers approach: Biomarkers on Eisenia fetida, physiochemical effects on Solanum lycopersicum and Olea europaea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119915. [PMID: 38169256 DOI: 10.1016/j.jenvman.2023.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Every year, the olive oil industry generates a substantial amount of pomace, a semi-solid residue made up of skin, pulp, pit, and kernel fragments. Rather than being disposed of, the pomace can be dried and transported to an extraction facility where pomace oil can be extracted. Utilizing its high thermal capacity, the extracted pomace can be used as a supplementary fuel in the drying process, resulting in the production of ashes. In this study, the effect of pomace waste applied to the soil was investigated by testing two mixtures with different proportions of de-oiled pomace flour and kernel ash (50:50 and 70:30, respectively) in powder and pellet form. We used a dual approach, evaluating the effects of the mixtures on both soil communities and plant physiology and productivity, to assess the actual usability of the fertilizer in agriculture. The biomarker approach was valuable in assessing the sublethal effects of the two mixtures in powder form in soil. After 30 days of exposure, the bioindicator organism Eisena fetida showed lipid peroxidation, glutathione S-transferase and lactate dehydrogenase levels similar to the control, while lysozyme activity was reduced in all treatments. The powder mixture was lethal to the tomato plants, while there was no evidence of any damage to the olive trees. During 60 days of monitoring, both mixtures in pellet form showed a slight increase in physiological parameters, suggesting a benefit to the photosynthetic system. The improved carbon assimilation in tomato plants treated with the mixtures results in increased plant productivity, both in terms of number and weight of fruits, while maintaining the antioxidant content. This study paves the way for the use of the pomace mixture as a soil improver, thus increasing the value of this waste product.
Collapse
Affiliation(s)
- S Parri
- Department of Life Science, University of Siena, 53100, Siena, Italy
| | - T Campani
- Department of Physical, Sciences, Earth and Environment, University of Siena, 53100, Siena, Italy.
| | - V Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - G Cai
- Department of Life Science, University of Siena, 53100, Siena, Italy
| | - M Romi
- Department of Life Science, University of Siena, 53100, Siena, Italy
| | - S Casini
- Department of Physical, Sciences, Earth and Environment, University of Siena, 53100, Siena, Italy
| | - R Zari
- Studio ZARI Agronomi & Forestali, 53014, Monteroni d'Arbia, Siena, Italy
| | - F Caldini
- Caldini Guido s.r.l., 53030, Radicondoli, Siena, Italy
| | - L Marsili
- Department of Physical, Sciences, Earth and Environment, University of Siena, 53100, Siena, Italy
| |
Collapse
|
6
|
Mohy-Ud-Din W, Chen F, Bashir S, Akhtar MJ, Asghar HN, Farooqi ZUR, Zulfiqar U, Haider FU, Afzal A, Alqahtani MD. Unlocking the potential of glyphosate-resistant bacterial strains in biodegradation and maize growth. Front Microbiol 2023; 14:1285566. [PMID: 38204469 PMCID: PMC10777731 DOI: 10.3389/fmicb.2023.1285566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Glyphosate [N-(phosphonomethyl)-glycine] is a non-selective herbicide with a broad spectrum activity that is commonly used to control perennial vegetation in agricultural fields. The widespread utilization of glyphosate in agriculture leads to soil, water, and food crop contamination, resulting in human and environmental health consequences. Therefore, it is imperative to devise techniques for enhancing the degradation of glyphosate in soil. Rhizobacteria play a crucial role in degrading organic contaminants. Limited work has been done on exploring the capabilities of indigenously existing glyphosate-degrading rhizobacteria in Pakistani soils. This research attempts to discover whether native bacteria have the glyphosate-degrading ability for a sustainable solution to glyphosate contamination. Therefore, this study explored the potential of 11 native strains isolated from the soil with repeated glyphosate application history and showed resistance against glyphosate at higher concentrations (200 mg kg-1). Five out of eleven strains outperformed in glyphosate degradation and plant growth promotion. High-pressure liquid chromatography showed that, on average, these five strains degraded 98% glyphosate. In addition, these strains promote maize seed germination index and shoot and root fresh biomass up to 73 and 91%, respectively. Furthermore, inoculation gave an average increase of acid phosphatase (57.97%), alkaline phosphatase (1.76-fold), and dehydrogenase activity (1.75-fold) in glyphosate-contaminated soil. The findings indicated the importance of using indigenous rhizobacteria to degrade glyphosate. Therefore, by maintaining soil health, indigenous soil biodiversity can work effectively for the bioremediation of contaminated soils and sustainable crop production in a world facing food security.
Collapse
Affiliation(s)
- Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Aneeqa Afzal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
7
|
Walsh L, Hill C, Ross RP. Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes 2023; 15:2263935. [PMID: 38099711 PMCID: PMC10561581 DOI: 10.1080/19490976.2023.2263935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glyphosate, the active ingredient in the broad-spectrum herbicide RoundupTM, has been a topic of discussion for decades due to contradictory reports of the effect of glyphosate on human health. Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic pathway producing aromatic amino acids in plants, a mechanism that suggests that the herbicide would not affect humans as this pathway is not found in mammals. However, numerous studies have implicated glyphosate exposure in the manifestation of a variety of disorders in the human body. This review specifically outlines the potential effect of glyphosate exposure on the composition and functionality of the gut microbiome. Evidence has been building behind the hypothesis that the composition of each individual gut microbiota significantly impacts health. For this reason, the potential of glyphosate to inhibit the growth of beneficial microbes in the gut or alter their functionality is an important topic that warrants further consideration.
Collapse
Affiliation(s)
- Lauren Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zhao J, Duan G, Zhu Y, Zhu D. Gut microbiota and transcriptome response of earthworms (Metaphire guillelmi) to polymyxin B exposure. J Environ Sci (China) 2023; 133:37-47. [PMID: 37451787 DOI: 10.1016/j.jes.2022.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 07/18/2023]
Abstract
Polymyxin B (PMB) has received widespread attention for its use as a last-line therapy against multidrug-resistant bacterial infection. However, the consequences of unintended PMB exposure on organisms in the surrounding environment remain inconclusive. Therefore, this study investigated the effects of soil PMB residue on the gut microbiota and transcriptome of earthworms (Metaphire guillelmi). The results indicated that the tested doses of PMB (0.01-100 mg/kg soil) did not significantly affect the richness and Shannon's diversity index of the earthworm gut microbiota, but PMB altered its community structure and taxonomic composition. Moreover, PMB significantly affected Lysobacter, Aeromonas, and Sphingomonas in the soil microbiota, whereas Pseudomonas was significantly impacted the earthworm gut microbiota. Furthermore, active bacteria responded more significantly to PMB than the total microbial community. Bacterial genera such as Acinetobacter and Bacillus were highly correlated with differential expression of some genes, including up-regulated genes associated with folate biosynthesis, sulphur metabolism, and the IL-17 signalling pathway, and downregulated genes involved in vitamin digestion and absorption, salivary secretion, other types of O-glycan biosynthesis, and the NOD-like receptor signalling pathway. These results suggest that adaptation to PMB stress by earthworms involves changes in energy metabolism, their immune and digestive systems, as well as glycan biosynthesis. The study findings help elucidate the relationship between earthworms and their microbiota, while providing a reference for understanding the environmental risks of PMB.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Zunino P. Native microbiomes in danger: Could One Health help to cope with this threat to global health? INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.178-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Planetary health faces an emergency associated with global change. Climate change, the increase in world population and urban concentration, the hyperintensification of productive systems, and the associated changes in land use, among other factors, are generating a risky substrate for global health deterioration. The emergence of the coronavirus disease 2019 pandemic is an example of the problems that this situation can provoke. Several researchers and health professionals have addressed the role of microorganisms, particularly bacteria, in promoting global health, mainly in the past decades. However, global changes have contributed to the extinction of a wide array of bacterial species and the disruption of microbial communities that support the homeostasis of humans, animals, and the environment. The need to protect the diversity and richness of native microbiomes in biotic and abiotic environments is crucial but has been frequently underestimated. The "One Health" approach, based on integrating traditionally unconnected fields such as human, animal, and environmental health, could provide a helpful framework to face this challenge. Anyway, drastic political decisions will be needed to tackle this global health crisis, in which the preservation of native microbial resources plays a critical role, even in preventing the risk of a new pandemic. This review aims to explain the importance of native microbiomes in biotic and abiotic ecosystems and the need to consider bacterial extinction as a crucial problem that could be addressed under a One Health approach.
Collapse
Affiliation(s)
- Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
10
|
Háhn J, Kriszt B, Tóth G, Jiang D, Fekete M, Szabó I, Göbölös B, Urbányi B, Szoboszlay S, Kaszab E. Glyphosate and glyphosate-based herbicides (GBHs) induce phenotypic imipenem resistance in Pseudomonas aeruginosa. Sci Rep 2022; 12:18258. [PMID: 36309535 PMCID: PMC9617868 DOI: 10.1038/s41598-022-23117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
GBHs are the most widely used herbicides for weed control worldwide that potentially affect microorganisms, but the role of their sublethal exposure in the development of antibiotic resistance of Pseudomonas aeruginosa is still not fully investigated. Here, the effects of glyphosate acid (GLY), five glyphosate-based herbicides (GBHs), and POE(15), a formerly used co-formulant, on susceptibility to imipenem, a potent carbapenem-type antibiotic, in one clinical and four non-clinical environmental P. aeruginosa isolates were studied. Both pre-exposure in broth culture and co-exposure in solid media of the examined P. aeruginosa strains with 0.5% GBHs resulted in a decreased susceptibility to imipenem, while other carbapenems (doripenem and meropenem) retained their effectiveness. Additionally, the microdilution chequerboard method was used to examine additive/antagonistic/synergistic effects between GLY/POE(15)/GBHs and imipenem by determining the fractional inhibitory concentration (FIC) indexes. Based on the FIC index values, glyphosate acid and Total demonstrated a potent antagonistic effect in all P. aeruginosa strains. Dominator Extra 608 SL and Fozat 480 reduced the activity of imipenem in only one strain (ATCC10145), while POE(15) and three other GBHs did not have any effect on susceptibility to imipenem. Considering the simultaneous presence of GBHs and imipenem in various environmental niches, the detected interactions between these chemicals may affect microbial communities. The mechanisms of the glyphosate and GBH-induced imipenem resistance in P. aeruginosa are yet to be investigated.
Collapse
Affiliation(s)
- Judit Háhn
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kriszt
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Gergő Tóth
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Dongze Jiang
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Márton Fekete
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Szabó
- grid.129553.90000 0001 1015 7851Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Göbölös
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Béla Urbányi
- grid.129553.90000 0001 1015 7851Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Sándor Szoboszlay
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Edit Kaszab
- grid.129553.90000 0001 1015 7851Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
11
|
Astaykina A, Streletskii R, Maslov M, Krasnov G, Gorbatov V. Effects of Three Pesticides on the Earthworm Lumbricus terrestris Gut Microbiota. Front Microbiol 2022; 13:853535. [PMID: 35422770 PMCID: PMC9004718 DOI: 10.3389/fmicb.2022.853535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022] Open
Abstract
Earthworms play a vital role in the terrestrial ecosystem functioning and maintenance of soil fertility. However, many pesticides, for example, imidacloprid, benomyl, and metribuzin that are world-widely used in agriculture, may be potentially dangerous to earthworms. At the same time, standard tests for pesticides acute and chronic toxicity do not reflect all aspects of their negative impact and might not be enough sensitive for effective assessment. In this paper, we studied the effects of non-lethal concentrations of imidacloprid, benomyl, and metribuzin on the gut bacterial community of Lumbricus terrestris using high-throughput sequencing approach. We found that pesticides reduced the total bacterial diversity in the earthworm's gut even at the recommended application rate. Under the applied pesticides, the structure of the gut prokaryotic community underwent changes in the relative abundance of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomyces, Verrucomicrobia, and Cyanobacteria, as well as the genera Haliangium, Gaiella, Paenisporosarcina, Oryzihumus, Candidatus Udaeobacter, and Aquisphaera. Moreover, the pesticides affected the abundance of Verminephrobacter-the earthworms' nephridia specific symbionts. In general, the negative impact of pesticides on bacterial biodiversity was significant even under pesticides content, which was much lower than their acute and chronic toxicity values for the earthworms. These results highlighted the fact that the earthworm's gut microbial community is highly sensitive to soil contamination with pesticides. Therefore, such examination should be considered in the pesticide risk assessment protocols.
Collapse
Affiliation(s)
| | | | - Mikhail Maslov
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
12
|
Updating the European Union's regulation on classification, labelling and packaging of substances and mixtures (CLP): A key opportunity for consumers, workers and stakeholders with interests in the legislation and toxicology of hazardous chemicals. Toxicol Rep 2021; 8:1865-1868. [PMID: 34824981 PMCID: PMC8604748 DOI: 10.1016/j.toxrep.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Recent advancements in toxicology and the European Union's Green Deal, with its Chemicals Strategy for Sustainability, have paved the way for major changes in EU legislation on the control of environmental chemicals for a cleaner and safer environment. Another substantial legislative advancement underway is the update of the "Regulation on Classification, Labelling and Packaging of Substances and Mixtures (CLP)," an ambitious piece of EU legislation with exceptional scientific toxicological background in identifying a hazard, aiming at better protecting its citizens and the environment from the risk of chemical substances and products, the occupational settings included. Update of CLP legislation additionally aims at facilitating the free exchange of chemicals in the European Internal Market, provided that proper labelling and packaging processes are implemented. Participation in the ongoing online public consultation on these issues, ending on November 15, 2021, is of key relevance to ensure a transparent and effective definition of such an important piece of legislation, fully compliant with current EU priorities in terms of human and environmental protection and animal welfare.
Collapse
|
13
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|