1
|
Li X, Lao R, Lei J, Chen Y, Zhou Q, Wang T, Tong Y. Natural Products for Acetaminophen-Induced Acute Liver Injury: A Review. Molecules 2023; 28:7901. [PMID: 38067630 PMCID: PMC10708418 DOI: 10.3390/molecules28237901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.
Collapse
Affiliation(s)
- Xiaoyangzi Li
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Ruyang Lao
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Jiawei Lei
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yuting Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, China;
| | - Qi Zhou
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| | - Ting Wang
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yingpeng Tong
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| |
Collapse
|
2
|
Mondal M, Bala J, Mondal KR, Afrin S, Saha P, Saha M, Jamaddar S, Roy UK, Sarkar C. The protective effects of nerol to prevent the toxicity of carbon tetrachloride to the liver in Sprague-Dawley rats. Heliyon 2023; 9:e23065. [PMID: 38125544 PMCID: PMC10731234 DOI: 10.1016/j.heliyon.2023.e23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Carbon-tetrachloride (CCl4) is well-known to cause liver damage due to severe oxidative stress. Nerol, on the other hand, is a monoterpene that is antioxidant, antiviral, antibacterial, anti-inflammatory, and anxiolytic. This study set out to determine if nerol may be used as a prophylactic measure against the oxidative stress mediated hepatic injury caused by CCl4. Materials and methods For the aim of this experiment, 35 male Sprague-Dawley rats ranging in body weight (BW) from 140 to 180 g were split into five separate groups. With the exception of vehicle control group 1, all experimental rats were subjected to carbon tetrachloride exposure through intra-peritoneal injection at a 0.7 mL/kg body weight dose once a week for 4 weeks (28 days). The treatment groups 3 and 4 received oral administration of nerol at 50 and 100 mg/kg BW for 28 days. In the same time period, the standard control group received 100 mg/kg BW silymarin. Results Serum hepatic markers, lipid profiles, albumin, globulin, bilirubin, and total protein were all substantially improved in nerol-treated rats in a dose-dependent manner that had been exposed to CCl4 compared to the only CCl4-treated group. Carbon tetrachloride-exposed rats had lower glutathione, superoxide dismutase, and catalase levels and higher thio-barbituric acid reactive substances (TBARS) levels than normal rats. In contrast, administration of nerol shown a significant augmentation in the concentrations of these antioxidant compounds, while concurrently inducing a decline in the levels of TBARS in the hepatic tissue. In a similar vein, the histo-pathological examination yielded further evidence indicating that nerol offered protection to the hepatocyte against damage generated by CCl4. Conclusion According to the findings of our investigation, nerol has potential as a functional element to shield the liver from harm brought on by ROS that are caused by CCL4.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Jibanananda Bala
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Sadia Afrin
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Protyaee Saha
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Moumita Saha
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Uttam Kumar Roy
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
3
|
Li Y, Cheng KC, Liu IM, Cheng JT. Identification of Andrographolide as an Agonist of Bile Acid TGR5 Receptor in a Cell Line to Demonstrate the Reduction in Hyperglycemia in Type-1 Diabetic Rats. Pharmaceuticals (Basel) 2023; 16:1417. [PMID: 37895888 PMCID: PMC10610544 DOI: 10.3390/ph16101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Andrographolide (ADG) is contained in bitter plants, and its effects are widely thought to be associated with taste receptors. The current study used animal studies and cell lines to investigate the role of ADG in diabetic models. The Takeda G-protein-coupled receptor (TGR5) was directly influenced by ADG, and this boosted GLP-1 synthesis in CHO-K1 cells transfected with the TGR5 gene. However, this was not seen in TGR5-mutant cells. The human intestinal L-cell line NCI-H716 showed an increase in GLP-1 production in response to ADG. In NCI-H716 cells, the TGR5 inhibitor triamterene reduced the effects of ADG, including the rise in TGR5 mRNA levels that ADG caused. Additionally, as with the antihyperglycemic impact in type-1 diabetic rats, the increase in plasma-active GLP-1 level caused by ADG was enhanced by a DPP-4 inhibitor. The recovery of the hypoglycemic effect in diabetic rats and the increase in plasma GLP-1 caused by ADG were both suppressed by TGR5 blockers. As a result, after activating TGR5, ADG may boost GLP-1 synthesis in diabetic rats, enhancing glucose homeostasis. In Min-6 cells, a pancreatic cell line grown in culture, ADG-induced insulin secretion was also examined. Blocking GLP-1 receptors had little impact, suggesting that ADG directly affects TGR5 activity in Min-6 cells. A TGR5 mRNA level experiment in Min-6 cells further confirmed that TGR5 is activated by ADG. The current study revealed a novel finding suggesting that ADG may activate TGR5 in diabetic rats in a way that results in enhanced insulin and GLP-1 production, which may be helpful for future research and therapies.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 90741, Taiwan; (K.-C.C.); (I.-M.L.)
| | - Juei-Tang Cheng
- Institute of Medical Sciences, Chang Jung Christian University, Tainan City 71101, Taiwan
| |
Collapse
|
4
|
Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P, Chantong B. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Front Pharmacol 2023; 14:1077228. [PMID: 36865924 PMCID: PMC9971231 DOI: 10.3389/fphar.2023.1077228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Diabetes mellitus is a common endocrine disorder that causes hyperglycemia in dogs. Persistent hyperglycemia can induce inflammation and oxidative stress. This study aimed to investigate the effects of A. paniculata (Burm.f.) Nees (Acanthaceae) (A. paniculata) on blood glucose, inflammation, and oxidative stress in canine diabetes. A total of 41 client-owned dogs (23 diabetic and 18 clinically healthy) were included in this double-blind, placebo-controlled trial. Methods: The diabetic dogs were further divided into two treatments protocols: group 1 received A. paniculata extract capsules (50 mg/kg/day; n = 6) or received placebo for 90 days (n = 7); and group 2 received A. paniculata extract capsules (100 mg/kg/day; n = 6) or received a placebo for 180 days (n = 4). Blood and urine samples were collected every month. No significant differences in fasting blood glucose, fructosamine, interleukin-6, tumor necrosis factor-alpha, superoxide dismutase, and malondialdehyde levels were observed between the treatment and placebo groups (p > 0.05). Results and Discussion: The levels of alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, and creatinine were stable in the treatment groups. The blood glucose levels and concentrations of inflammatory and oxidative stress markers in the client-owned diabetic dogs were not altered by A. paniculata supplementation. Furthermore, treatment with this extract did not have any adverse effects on the animals. Non-etheless, the effects of A. paniculata on canine diabetes must be appropriately evaluated using a proteomic approach and involving a wider variety of protein markers.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Boonrat Chantong,
| |
Collapse
|
5
|
Sarkar C, Mondal M, Al-Khafaji K, El-Kersh DM, Jamaddar S, Ray P, Roy UK, Afroze M, Moniruzzaman M, Khan M, Asha UH, Khalipha ABR, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Shill MC, Islam MT. GC–MS analysis, and evaluation of protective effect of Piper chaba stem bark against paracetamol-induced liver damage in Sprague-Dawley rats: Possible defensive mechanism by targeting CYP2E1 enzyme through in silico study. Life Sci 2022; 309:121044. [DOI: 10.1016/j.lfs.2022.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|