1
|
Morland F, Ewen JG, Santure AW, Brekke P, Hemmings N. Demographic drivers of reproductive failure in a threatened bird: Insights from a decade of data. Proc Natl Acad Sci U S A 2024; 121:e2319104121. [PMID: 39186647 PMCID: PMC11388365 DOI: 10.1073/pnas.2319104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/10/2024] [Indexed: 08/28/2024] Open
Abstract
Hatching failure affects up to 77% of eggs laid by threatened bird species, yet the true prevalence and drivers of egg fertilization failure versus embryo mortality as underlying mechanisms of hatching failure are unknown. Here, using ten years of data comprising 4,371 eggs laid by a population of a threatened bird, the hihi (Notiomystis cincta), we investigate the relative importance of infertility and embryo death as drivers of hatching failure and explore population-level factors associated with them. We show that of the 1,438 eggs that failed to hatch (33% of laid eggs) between 2010 and 2020, 83% failed due to embryo mortality, with the majority failing in the early stages of embryonic development. In the most comprehensive estimates of infertility rates in a wild bird population to date, we find that fertilization failure accounts for around 17% of hatching failure overall and is more prevalent in years where the population is smaller and more male biased. Male embryos are more likely to die during early development than females, but we find no overall effect of sex on the successful development of embryos. Offspring fathered by within-pair males have significantly higher inbreeding levels than extra-pair offspring; however, we find no effect of inbreeding nor extra-pair paternity on embryo mortality. Accurately distinguishing between infertility and embryo mortality in this study provides unique insight into the underlying causes of reproductive failure over a long-term scale and reveals the complex risks of small population sizes to the reproduction of threatened species.
Collapse
Affiliation(s)
- Fay Morland
- Department of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute of Zoology, Zoological Society of London, London NW8 7LS, United Kingdom
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London NW8 7LS, United Kingdom
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London NW8 7LS, United Kingdom
| | - Nicola Hemmings
- Department of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
2
|
Cortes O, Cañon J, Andrino S, Fernanadez M, Carleos C. Inbreeding depression and runs of homozygosity islands in Asturiana de los Valles cattle breed after 30 years of selection. J Anim Breed Genet 2024; 141:440-452. [PMID: 38303546 DOI: 10.1111/jbg.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Inbreeding depression results in a decrease in the average phenotypic values of affected traits. It has been traditionally estimated from pedigree-based inbreeding coefficients. However, with the development of single-nucleotide polymorphism arrays, novel methods were developed for calculating the inbreeding coefficient, and consequently, inbreeding depression. The aim of the study was to analyse inbreeding depression in 6 growth and 2 reproductive traits in the Asturiana de los Valles cattle breed using both genealogical and molecular information. The pedigree group comprised 225,848 records and an average equivalent number of complete generations of 2.3. The molecular data comprised genotypes of 2693 animals using the Affymetrix medium-density chip. Using the pedigree information, three different inbreeding coefficients were estimated for the genotyped animals: the full pedigree coefficient (FPED), and the recent and ancient inbreeding coefficients based on the information of the last three generations (FPED<3G) and until the last three generations (FPED>3G), respectively. Using the molecular data, seven inbreeding coefficients were calculated. Four of them were estimated based on runs of homozygosity (ROH), considering (1) the total length (FROH), (2) segments shorter than 4 megabases (FROH<4), (3) between 4 and 17 megabases (FROH4-17), and (4) longer than 17 Mb (FROH>17). Additionally, the three inbreeding coefficients implemented in the Plink software (FHAT1-3) were estimated. Inbreeding depression was estimated using linear mixed-effects model with inbreeding coefficients used as covariates. All analysed traits (birth weight, preweaning average daily gain, weaning weight adjusted at 180 days, carcass weight, calving ease, age at first calving, calving interval) showed a statistically significant non-zero effect of inbreeding depression estimated from the pedigree group, except for the Postweaning Average Daily Gain trait. When inbreeding coefficients were based on the genomic group, statistically significant inbreeding depression was observed for two traits, Preweaning Average Daily Gain and Weaning Weight based on FROH, FROH>17, and FHAT3 inbreeding coefficients. Nevertheless, similar to inbreeding depression estimated based on pedigree information, estimates of inbreeding depression based on genomic information had no relevant economic impact. Despite this, from a long-term perspective, genotyped data could be included to maximize genetic progress in genetic programs following an optimal genetic contribution strategy and to consider individual inbreeding load instead global inbreeding. ROH islands were identified on chromosomes 2, 3, 8, 10, and 16. Such regions contain several candidate genes for growth development, intramuscular fat, body weight and lipid metabolism that are related to production traits selected in Asturiana de los Valles breed.
Collapse
Affiliation(s)
- Oscar Cortes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Cañon
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Andrino
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Fernanadez
- Asociación Española de Criadores de Ganado Vacuno Selecto de la Raza Asturiana de los Valles, Llanera, Spain
| | - Carlos Carleos
- Departamento Estadística e Investigación Operativa, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
3
|
Mugambe J, Ahmed RH, Thaller G, Schmidtmann C. Impact of inbreeding on production, fertility, and health traits in German Holstein dairy cattle utilizing various inbreeding estimators. J Dairy Sci 2024; 107:4714-4725. [PMID: 38310961 DOI: 10.3168/jds.2023-23728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
In dairy cattle production, it is important to understand how inbreeding affects production, fertility, and health traits. However, there is still limited use of genomic information to estimate inbreeding, despite advancements in genotyping technologies. To address this gap, we investigated the effect of inbreeding on German Holstein dairy cattle using both pedigree-based and genomic-based inbreeding estimators. We employed one method based on pedigree information (Fped) together with 6 genomic-based methods, including 3 genome-wide complex trait analysis software estimators (Fhat1, Fhat2, Fhat3), VanRaden's first method (FVR1, with observed allele frequencies, and FVR0.5, when allele frequencies are set to 0.5), and one based on runs of homozygosity (Froh). Data from 24,489 cows with both phenotypes and genotypes were used, with a pedigree including 232,780 animals born between 1970 and 2018. We analyzed the effects of inbreeding depression on production, fertility, and health traits separately, using single-trait linear animal models as well as threshold models to account for the binary nature of the health traits. For the health traits, we transformed solutions from the liability scale to a probability scale for easier interpretation. Our results showed that the mean inbreeding coefficients from all estimators ranged from -0.003 to 0.243, with negative values observed for most genomic-based methods. We found out that a 1% increase in inbreeding caused a depression ranging from 25.94 kg (Fhat1) to 40.62 kg (Fhat3), 1.18 kg (Fhat2) to 1.70 kg (Fhat3), 0.90 kg (Fhat2) to 1.45 kg (Froh and Fhat3), 0.19 (Fped) to 0.34 d (Fhat3) for 305-d milk yield, fat, protein, and calving interval, respectively. The health traits showed very slight gradual changes when inbreeding was increased steadily from 0% to 50%, with digital dermatitis showing a rather contrasting trend to that of mastitis, which increased the more an animal was inbred. Overall, our study highlights the importance of considering both pedigree-based and genomic-based inbreeding estimators when assessing the impact on inbreeding, emphasizing that not all inbreeding is harmful.
Collapse
Affiliation(s)
- Julius Mugambe
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - Rana H Ahmed
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany; IT-Solutions for Animal Production (vit), 27283 Verden, Germany
| |
Collapse
|
4
|
Lawson DJ, Howard-McCombe J, Beaumont M, Senn H. How admixed captive breeding populations could be rescued using local ancestry information. Mol Ecol 2024:e17349. [PMID: 38634332 DOI: 10.1111/mec.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
This paper asks the question: can genomic information be used to recover a species that is already on the pathway to extinction due to genetic swamping from a related and more numerous population? We show that a breeding strategy in a captive breeding program can use whole genome sequencing to identify and remove segments of DNA introgressed through hybridisation. The proposed policy uses a generalized measure of kinship or heterozygosity accounting for local ancestry, that is, whether a specific genetic location was inherited from the target of conservation. We then show that optimizing these measures would minimize undesired ancestry while also controlling kinship and/or heterozygosity, in a simulated breeding population. The process is applied to real data representing the hybridized Scottish wildcat breeding population, with the result that it should be possible to breed out domestic cat ancestry. The ability to reverse introgression is a powerful tool brought about through the combination of sequencing with computational advances in ancestry estimation. Since it works best when applied early in the process, important decisions need to be made about which genetically distinct populations should benefit from it and which should be left to reform into a single population.
Collapse
Affiliation(s)
- Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Jo Howard-McCombe
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh, UK
| |
Collapse
|
5
|
Guan Y, Levy D. Estimation of inbreeding and kinship coefficients via latent identity-by-descent states. Bioinformatics 2024; 40:btae082. [PMID: 38364309 PMCID: PMC10902678 DOI: 10.1093/bioinformatics/btae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
MOTIVATION Estimating the individual inbreeding coefficient and pairwise kinship is an important problem in human genetics (e.g. in disease mapping) and in animal and plant genetics (e.g. inbreeding design). Existing methods, such as sample correlation-based genetic relationship matrix, KING, and UKin, are either biased, or not able to estimate inbreeding coefficients, or produce a large proportion of negative estimates that are difficult to interpret. This limitation of existing methods is partly due to failure to explicitly model inbreeding. Since all humans are inbred to various degrees by virtue of shared ancestries, it is prudent to account for inbreeding when inferring kinship between individuals. RESULTS We present "Kindred," an approach that estimates inbreeding and kinship by modeling latent identity-by-descent states that accounts for all possible allele sharing-including inbreeding-between two individuals. Kindred used non-negative least squares method to fit the model, which not only increases computation efficiency compared to the maximum likelihood method, but also guarantees non-negativity of the kinship estimates. Through simulation, we demonstrate the high accuracy and non-negativity of kinship estimates by Kindred. By selecting a subset of SNPs that are similar in allele frequencies across different continental populations, Kindred can accurately estimate kinship between admixed samples. In addition, we demonstrate that the realized kinship matrix estimated by Kindred is effective in reducing genomic control values via linear mixed model in genome-wide association studies. Finally, we demonstrate that Kindred produces sensible heritability estimates on an Australian height dataset. AVAILABILITY AND IMPLEMENTATION Kindred is implemented in C with multi-threading. It takes vcf file or stream as input and works seamlessly with bcftools. Kindred is freely available at https://github.com/haplotype/kindred.
Collapse
Affiliation(s)
- Yongtao Guan
- Framingham Heart Study, Framingham, MA 01702, United States
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, DC 20892, United States
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, United States
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, DC 20892, United States
| |
Collapse
|
6
|
Naji MM, Gualdrón Duarte JL, Forneris NS, Druet T. Inbreeding depression is associated with recent homozygous-by-descent segments in Belgian Blue beef cattle. Genet Sel Evol 2024; 56:10. [PMID: 38297209 PMCID: PMC10832232 DOI: 10.1186/s12711-024-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cattle populations harbor generally high inbreeding levels that can lead to inbreeding depression (ID). Here, we study ID with different estimators of the inbreeding coefficient F, evaluate their sensitivity to used allele frequencies (founder versus sample allele frequencies), and compare effects from recent and ancient inbreeding. METHODS We used data from 14,205 Belgian Blue beef cattle genotyped cows that were phenotyped for 11 linear classification traits. We computed estimators of F based on the pedigree information (FPED), on the correlation between uniting gametes (FUNI), on the genomic relationship matrix (FGRM), on excess homozygosity (FHET), or on homozygous-by-descent (HBD) segments (FHBD). RESULTS FUNI and FGRM were sensitive to used allele frequencies, whereas FHET and FHBD were more robust. We detected significant ID for four traits related to height and length; FHBD and FUNI presenting the strongest associations. Then, we took advantage of the classification of HBD segments in different age-related classes (the length of an HBD segment being inversely related to the number of generations to the common ancestors) to determine that recent HBD classes (common ancestors present approximately up to 15 generations in the past) presented stronger ID than more ancient HBD classes. We performed additional analyses to check whether these observations could result from a lower level of variation in ancient HBD classes, or from a reduced precision to identify these shorter segments. CONCLUSIONS Overall, our results suggest that mutational load decreases with haplotype age, and that mating plans should consider mainly the levels of recent inbreeding.
Collapse
Affiliation(s)
- Maulana Mughitz Naji
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium.
| | - José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium
- Walloon Breeders Association (awe groupe), 5590, Ciney, Belgium
| | - Natalia Soledad Forneris
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium
| |
Collapse
|
7
|
Wehrenberg G, Tokarska M, Cocchiararo B, Nowak C. A reduced SNP panel optimised for non-invasive genetic assessment of a genetically impoverished conservation icon, the European bison. Sci Rep 2024; 14:1875. [PMID: 38253649 PMCID: PMC10803807 DOI: 10.1038/s41598-024-51495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The European bison was saved from the brink of extinction due to considerable conservation efforts since the early twentieth century. The current global population of > 9500 individuals is the result of successful ex situ breeding based on a stock of only 12 founders, resulting in an extremely low level of genetic variability. Due to the low allelic diversity, traditional molecular tools, such as microsatellites, fail to provide sufficient resolution for accurate genetic assessments in European bison, let alone from non-invasive samples. Here, we present a SNP panel for accurate high-resolution genotyping of European bison, which is suitable for a wide variety of sample types. The panel accommodates 96 markers allowing for individual and parental assignment, sex determination, breeding line discrimination, and cross-species detection. Two applications were shown to be utilisable in further Bos species with potential conservation significance. The new SNP panel will allow to tackle crucial tasks in European bison conservation, including the genetic monitoring of reintroduced populations, and a molecular assessment of pedigree data documented in the world's first studbook of a threatened species.
Collapse
Affiliation(s)
- Gerrit Wehrenberg
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany.
- Department of Ecology and Evolution, Biologicum, Johann Wolfgang Goethe-University, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 8000, 90014, Oulu, Finland.
| | | | - Berardino Cocchiararo
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Carsten Nowak
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Taking identity-by-descent analysis into the wild: Estimating realized relatedness in free-ranging macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574911. [PMID: 38260273 PMCID: PMC10802400 DOI: 10.1101/2024.01.09.574911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vladimir M Jovanovic
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Noah Snyder-Mackler
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hendrikje Westphal
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Stefanie Bley
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina, Durham, USA
- Research and Collections Section, North Carolina Museum of Natural Sciences, North Carolina, Raleigh, USA
- Department of Biological Sciences, North Carolina State University, North Carolina, Raleigh, USA
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, the Wharton School of Business, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke University Population Research Institute, Durham, North Carolina, USA
| | - Katja Nowick
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Widdig
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
9
|
White LC, Städele V, Ramirez Amaya S, Langergraber K, Vigilant L. Female chimpanzees avoid inbreeding even in the presence of substantial bisexual philopatry. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230967. [PMID: 38234436 PMCID: PMC10791533 DOI: 10.1098/rsos.230967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Inbreeding (reproduction between relatives) often decreases the fitness of offspring and is thus expected to lead to the evolution of inbreeding avoidance strategies. Chimpanzees (Pan troglodytes) are expected to avoid inbreeding as they are long-lived, invest heavily in offspring and may encounter adult, opposite sex kin frequently, especially in populations where both males and females commonly remain in the group in which they were born (bisexual philopatry). However, it is unclear whether substantial bisexual philopatry has been a feature of chimpanzees' evolutionary history or whether it is a result of recent anthropogenic interference, as the only groups for which it has been documented are significantly impacted by human encroachment and experience notable rates of potentially unsustainable inbreeding. Here we use 14 years of observational data and a large genomic dataset of 256 481 loci sequenced from 459 individuals to document dispersal and inbreeding dynamics in an eastern chimpanzee (P. t. schweinfurthii) community with low levels of anthropogenic disturbance. We document the first case of substantial bisexual philopatry in a relatively undisturbed chimpanzee community and show that, despite an increased inbreeding risk incurred by females who do not disperse before reaching reproductive age, natal females were still able to avoid producing inbred offspring.
Collapse
Affiliation(s)
- Lauren C. White
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Arthur Rylah Institute for Environmental Research, Department of Energy, Environment and Climate Action, Melbourne, Australia
| | - Veronika Städele
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Sebastian Ramirez Amaya
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Kevin Langergraber
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Dossa HRG, Bureau A, Maziade M, Lakhal-Chaieb L, Oualkacha K. A novel rare variants association test for binary traits in family-based designs via copulas. Stat Methods Med Res 2023; 32:2096-2122. [PMID: 37832140 PMCID: PMC10683345 DOI: 10.1177/09622802231197977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
With the cost-effectiveness technology in whole-genome sequencing, more sophisticated statistical methods for testing genetic association with both rare and common variants are being investigated to identify the genetic variation between individuals. Several methods which group variants, also called gene-based approaches, are developed. For instance, advanced extensions of the sequence kernel association test, which is a widely used variant-set test, have been proposed for unrelated samples and extended for family data. Family data have been shown to be powerful when analyzing rare variants. However, most of such methods capture familial relatedness using a random effect component within the generalized linear mixed model framework. Therefore, there is a need to develop unified and flexible methods to study the association between a set of genetic variants and a trait, especially for a binary outcome. Copulas are multivariate distribution functions with uniform margins on the [ 0 , 1 ] interval and they provide suitable models to capture familial dependence structure. In this work, we propose a flexible family-based association test for both rare and common variants in the presence of binary traits. The method, termed novel rare variant association test (NRVAT), uses a marginal logistic model and a Gaussian Copula. The latter is employed to model the dependence between relatives. An analytic score-type test is derived. Through simulations, we show that our method can achieve greater power than existing approaches. The proposed model is applied to investigate the association between schizophrenia and bipolar disorder in a family-based cohort consisting of 17 extended families from Eastern Quebec.
Collapse
Affiliation(s)
- Houssou R. G. Dossa
- Département de Mathématiques, Université du Québec à Montréal (UQAM) et, Québec, Canada
| | - Alexandre Bureau
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
- Centre de Recherche CERVO, Quebec, Canada
| | - Michel Maziade
- Centre de Recherche CERVO, Quebec, Canada
- Département de Psychiatrie et Neuroscience, Université Laval, Québec, Canada
| | - Lajmi Lakhal-Chaieb
- Département de Mathématiques et Statistique, Université Laval, Québec, Canada
| | - Karim Oualkacha
- Département de Mathématiques, Université du Québec à Montréal (UQAM) et, Québec, Canada
| |
Collapse
|
11
|
Arias KD, Gutiérrez JP, Fernández I, Álvarez I, Goyache F. Approaching autozygosity in a small pedigree of Gochu Asturcelta pigs. Genet Sel Evol 2023; 55:74. [PMID: 37880572 PMCID: PMC10601182 DOI: 10.1186/s12711-023-00846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue. The aim of this research was to study the usefulness of genomic information for the assessment of genetic diversity in the highly endangered Gochu Asturcelta pig breed. Pedigree depth varied from 0 (founders) to 4 equivalent discrete generations (t). Four homozygosity parameters (runs of homozygosity, FROH; heterozygosity-rich regions, FHRR; Li and Horvitz's, FLH; and Yang and colleague's FYAN) were computed for each individual, adjusted for the variability in the base population (BP; six individuals) and further jackknifed over autosomes. Individual increases in homozygosity (depending on t) and increases in pairwise homozygosity (i.e., increase in the parents' mean) were computed for each individual in the pedigree, and effective population size (Ne) was computed for five subpopulations (cohorts). Genealogical parameters (individual inbreeding, individual increase in inbreeding, and Ne) were used for comparisons. RESULTS The mean F was 0.120 ± 0.074 and the mean BP-adjusted homozygosity ranged from 0.099 ± 0.081 (FLH) to 0.152 ± 0.075 (FYAN). After jackknifing, the mean values were slightly lower. The increase in pairwise homozygosity tended to be twofold higher than the corresponding individual increase in homozygosity values. When compared with genealogical estimates, estimates of Ne obtained using FYAN tended to have low root-mean-squared errors. However, Ne estimates based on increases in pairwise homozygosity using both FROH and FHRR estimates of genomic inbreeding had lower root-mean-squared errors. CONCLUSIONS Parameters characterizing homozygosity may not accurately depict losses of variability in small populations in which breeding policy prohibits matings between close relatives. After BP adjustment, the performance of FROH and FHRR was highly consistent. Assuming that an increase in homozygosity depends only on pedigree depth can lead to underestimating it in populations with shallow pedigrees. An increase in pairwise homozygosity computed from either FROH or FHRR is a promising approach for characterizing autozygosity.
Collapse
Affiliation(s)
- Katherine D Arias
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - Iván Fernández
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Isabel Álvarez
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
12
|
Leng D, Ge L, Sun J. Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS. Anim Biosci 2023; 36:1508-1516. [PMID: 37402459 PMCID: PMC10475371 DOI: 10.5713/ab.23.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. METHODS We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. RESULTS Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. CONCLUSION Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.
Collapse
Affiliation(s)
- Dong Leng
- Chongqing Academy of Animal Science, Chongqing 404100,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130,
China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Chongqing 404100,
China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 404100,
China
- National Center of Technology Innovation for Swine, Chongqing 404100,
China
| | - Jing Sun
- Chongqing Academy of Animal Science, Chongqing 404100,
China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 404100,
China
- National Center of Technology Innovation for Swine, Chongqing 404100,
China
| |
Collapse
|
13
|
Menor-Flores M, Vega-Rodríguez MA, Molina F. Iterative Level-0: A new and fast algorithm to traverse mating networks calculating the inbreeding and relationship coefficients. Comput Biol Med 2023; 164:107296. [PMID: 37566933 DOI: 10.1016/j.compbiomed.2023.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
In population medical genetics, the study of autosomal recessive disorders in highly endogamous populations is a major topic where calculating the inbreeding and relationship coefficients on mating networks is crucial. However, a challenge arises when dealing with large and complex mating networks, making their traversal difficult during the calculation process. For this calculation, we propose using Iterative Level-0 (IL0) as a new and faster algorithm that traverses mating networks more efficiently. The purpose of this work is to explain in detail the IL0 algorithm and prove its superiority by comparing it with two algorithms based on the best-known algorithms in the area: Depth First Search (DFS) and Breadth First Search (BFS). A Cytoscape application has been developed to calculate the inbreeding and relationship coefficients of individuals composing any mating network. In this application, the IL0 proposal together with DFS-based and BFS-based algorithms have been implemented. Any user can access this freely available Cytoscape application (https://apps.cytoscape.org/apps/inbreeding) that allows the comparison between the IL0 proposal and the best-known algorithms (based on DFS and BFS). In addition, a diverse set of mating networks has been collected in terms of complexity (number of edges) and species (humans, primates, and dogs) for the experiments. The runtime obtained by the IL0, DFS-based, and BFS-based algorithms when calculating the inbreeding and relationship coefficients proved the improvement of IL0. In fact, a speedup study reflected that the IL0 algorithm is 7.60 to 127.50 times faster than DFS-based and BFS-based algorithms. Moreover, a scalability study found that the growth of the IL0 runtime has a linear dependence on the number of edges of the mating network, while the DFS-based and BFS-based runtimes have a quadratic dependence. Therefore, the IL0 algorithm can solve the problem of calculating the inbreeding and relationship coefficients many times faster (up to 127.50) than the two algorithms based on the famous DFS and BFS. Furthermore, our results demonstrate that IL0 scales much better as the complexity of mating networks increases.
Collapse
Affiliation(s)
- Manuel Menor-Flores
- Escuela Politécnica, Universidad de Extremadura(1), Campus Universitario s/n, 10003 Cáceres, Spain.
| | - Miguel A Vega-Rodríguez
- Escuela Politécnica, Universidad de Extremadura(1), Campus Universitario s/n, 10003 Cáceres, Spain.
| | - Felipe Molina
- Facultad de Ciencias, Universidad de Extremadura (1), Avda. de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
14
|
Tchounke B, Sanchez L, Bell JM, Cros D. Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding. PLoS Comput Biol 2023; 19:e1010290. [PMID: 37695766 PMCID: PMC10513302 DOI: 10.1371/journal.pcbi.1010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Genomic selection (GS) is an effective method for the genetic improvement of complex traits in plants and animals. Optimization approaches could be used in conjunction with GS to further increase its efficiency and to limit inbreeding, which can increase faster with GS. Mate selection (MS) typically uses a metaheuristic optimization algorithm, simulated annealing, to optimize the selection of individuals and their matings. However, in species with long breeding cycles, this cannot be studied empirically. Here, we investigated this aspect with forward genetic simulations on a high-performance computing cluster and massively parallel computing, considering the oil palm hybrid breeding example. We compared MS and simple methods of inbreeding management (limitation of the number of individuals selected per family, prohibition of self-fertilization and combination of these two methods), in terms of parental inbreeding and genetic progress over four generations of genomic selection and phenotypic selection. The results showed that, compared to the conventional method without optimization, MS could lead to significant decreases in inbreeding and increases in annual genetic progress, with the magnitude of the effect depending on MS parameters and breeding scenarios. The optimal solution retained by MS differed by five breeding characteristics from the conventional solution: selected individuals covering a broader range of genetic values, fewer individuals selected per full-sib family, decreased percentage of selfings, selfings preferentially made on the best individuals and unbalanced number of crosses among selected individuals, with the better an individual, the higher the number of times he is mated. Stronger slowing-down in inbreeding could be achieved with other methods but they were associated with a decreased genetic progress. We recommend that breeders use MS, with preliminary analyses to identify the proper parameters to reach the goals of the breeding program in terms of inbreeding and genetic gain.
Collapse
Affiliation(s)
- Billy Tchounke
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Joseph Martin Bell
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - David Cros
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
15
|
Hudson DW, McKinley TJ, Benton CH, Delahay R, McDonald RA, Hodgson DJ. Multi-locus homozygosity promotes actuarial senescence in a wild mammal. J Anim Ecol 2023; 92:1881-1892. [PMID: 37427855 DOI: 10.1111/1365-2656.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Genome-wide homozygosity, caused for example by inbreeding, is expected to have deleterious effects on survival and/or reproduction. Evolutionary theory predicts that any fitness costs are likely to be detected in late life because natural selection will filter out negative impacts on younger individuals with greater reproductive value. Here we infer associations between multi-locus homozygosity (MLH), sex, disease and age-dependent mortality risks using Bayesian analysis of the life histories of wild European badgers Meles meles in a population naturally infected with Mycobacterium bovis (the causative agent of bovine tuberculosis [bTB]). We find important effects of MLH on all parameters of the Gompertz-Makeham mortality hazard function, but particularly in later life. Our findings confirm the predicted association between genomic homozygosity and actuarial senescence. Increased homozygosity is particularly associated with an earlier onset, and greater rates of actuarial senescence, regardless of sex. The association between homozygosity and actuarial senescence is further amplified among badgers putatively infected with bTB. These results recommend further investigation into the ecological and behavioural processes that result in genome-wide homozygosity, and focused work on whether homozygosity is harmful or beneficial during early life-stages.
Collapse
Affiliation(s)
- Dave W Hudson
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Clare H Benton
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK
| | - Richard Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Dave J Hodgson
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
16
|
Nishio M, Inoue K, Ogawa S, Ichinoseki K, Arakawa A, Fukuzawa Y, Okamura T, Kobayashi E, Taniguchi M, Oe M, Ishii K. Comparing pedigree and genomic inbreeding coefficients, and inbreeding depression of reproductive traits in Japanese Black cattle. BMC Genomics 2023; 24:376. [PMID: 37403068 DOI: 10.1186/s12864-023-09480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Pedigree-based inbreeding coefficients have been generally included in statistical models for genetic evaluation of Japanese Black cattle. The use of genomic data is expected to provide precise assessment of inbreeding level and depression. Recently, many measures have been used for genome-based inbreeding coefficients; however, with no consensus on which is the most appropriate. Therefore, we compared the pedigree- ([Formula: see text]) and multiple genome-based inbreeding coefficients, which were calculated from the genomic relationship matrix with observed allele frequencies ([Formula: see text]), correlation between uniting gametes ([Formula: see text]), the observed vs expected number of homozygous genotypes ([Formula: see text]), runs of homozygosity (ROH) segments ([Formula: see text]) and heterozygosity by descent segments ([Formula: see text]). We quantified inbreeding depression from estimating regression coefficients of inbreeding coefficients on three reproductive traits: age at first calving (AFC), calving difficulty (CD) and gestation length (GL) in Japanese Black cattle. RESULTS The highest correlations with [Formula: see text] were for [Formula: see text] (0.86) and [Formula: see text] (0.85) whereas [Formula: see text] and [Formula: see text] provided weak correlations with [Formula: see text], with range 0.33-0.55. Except for [Formula: see text] and [Formula: see text], there were strong correlations among genome-based inbreeding coefficients ([Formula: see text] 0.94). The estimates of regression coefficients of inbreeding depression for [Formula: see text] was 2.1 for AFC, 0.63 for CD and -1.21 for GL, respectively, but [Formula: see text] had no significant effects on all traits. Genome-based inbreeding coefficients provided larger effects on all reproductive traits than [Formula: see text]. In particular, for CD, all estimated regression coefficients for genome-based inbreeding coefficients were significant, and for GL, that for [Formula: see text] had a significant.. Although there were no significant effects when using overall genome-level inbreeding coefficients for AFC and GL, [Formula: see text] provided significant effects at chromosomal level in four chromosomes for AFC, three chromosomes for CD, and two chromosomes for GL. In addition, similar results were obtained for [Formula: see text]. CONCLUSIONS Genome-based inbreeding coefficients can capture more phenotypic variation than [Formula: see text]. In particular, [Formula: see text] and [Formula: see text] can be considered good estimators for quantifying inbreeding level and identifying inbreeding depression at the chromosome level. These findings might improve the quantification of inbreeding and breeding programs using genome-based inbreeding coefficients.
Collapse
Affiliation(s)
- Motohide Nishio
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan.
| | - Keiichi Inoue
- University of Miyazaki, Miyazaki, Miyazaki, 889-2192, Japan
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Shinichiro Ogawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Kasumi Ichinoseki
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Yo Fukuzawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Toshihiro Okamura
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Eiji Kobayashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Masaaki Taniguchi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Mika Oe
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Kazuo Ishii
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| |
Collapse
|
17
|
Pérez‐Pereira N, Quesada H, Caballero A. An empirical evaluation of the estimation of inbreeding depression from molecular markers under suboptimal conditions. Evol Appl 2023; 16:1302-1315. [PMID: 37492144 PMCID: PMC10363801 DOI: 10.1111/eva.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/27/2023] Open
Abstract
Inbreeding depression (ID), the reduction in fitness due to inbreeding, is typically measured by the regression of the phenotypic values of individuals for a particular trait on their corresponding inbreeding coefficients (F). While genealogical records can provide these coefficients, they may be unavailable or incomplete, making molecular markers a useful alternative. The power to detect ID and its accuracy depend on the variation of F values of individuals, the sample sizes available, and the accuracy in the estimation of individual fitness traits and F values. In this study, we used Drosophila melanogaster to evaluate the effectiveness of molecular markers in estimating ID under suboptimal conditions. We generated two sets of 100 pairs of unrelated individuals from a large panmictic population and mated them for two generations to produce non-inbred and unrelated individuals (F = 0) and inbred individuals (full-sib progeny; F = 0.25). Using these expected genealogical F values, we calculated inbreeding depression for two fitness-related traits, pupae productivity and competitive fitness. We then sequenced the males from 17 non-inbred pairs and 17 inbred pairs to obtain their genomic inbreeding coefficients and estimate ID for the two traits. The scenario assumed was rather restrictive in terms of estimation of ID because: (1) the individuals belonged to the same generation of a large panmictic population, leading to low variation in individual F coefficients; (2) the sample sizes were small; and (3) the traits measured depended on both males and females while only males were sequenced. Despite the challenging conditions of our study, we found that molecular markers provided estimates of ID that were comparable to those obtained from simple pedigree estimations with larger sample sizes. The results therefore suggest that genomic measures of inbreeding are useful to provide estimates of inbreeding depression even under very challenging scenarios.
Collapse
Affiliation(s)
- Noelia Pérez‐Pereira
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| | - Humberto Quesada
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| | - Armando Caballero
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| |
Collapse
|
18
|
Carrier A, Gilbert I, Leclerc P, Duchesne M, Robert C. Characterization of the genetic pool of the Canadienne dairy cattle breed. Genet Sel Evol 2023; 55:32. [PMID: 37161364 PMCID: PMC10170705 DOI: 10.1186/s12711-023-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Canadienne cattle are the oldest breed of dairy cattle in North America. The Canadienne breed originates from cattle that were brought to America by the mid-seventeenth century French settlers. The herd book was established in 1886 and the current breed characteristics include dark coat color, small size compared to the modern Holstein breed, and overall rusticity shaped by the harsh environmental conditions that were prevalent during the settlement of North America. The Canadienne breed is an invaluable genetic resource due to its high resilience, longevity and fertility. However, it is heavily threatened with a current herd limited to an estimated 1200 registered animals, of which less than 300 are fullblood. To date, no effort has been made to document the genetic pool of this heritage breed in order to preserve it. RESULTS In this project, we used genomic data, which allow a precise description of the genetic makeup of a population, to provide valuable information on the genetic diversity of this heritage breed and suggest management options for its long-term viability. Using a panel that includes 640,000 single nucleotide polymorphisms (SNPs), we genotyped 190 animals grouped into six purity ranges. Unsupervised clustering analyses revealed three genetically distinct groups among those with the higher levels of purity. The observed heterozygosity was higher than expected even in the 100% purebreds. Comparison with Holstein genotypes showed significantly shorter runs of homozygosity for the Canadienne breed, which was unexpected due to the high inbreeding value calculated from pedigree data. CONCLUSIONS Overall, our data indicate that the fullblood gene pool of the Canadienne breed is more diversified than expected and that bloodline management could promote breed sustainability. In its current state, the Canadienne is not a dead-end breed but remains highly vulnerable due to its small population size.
Collapse
Affiliation(s)
- Alexandra Carrier
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Dé̇partement des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Dé̇partement des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| | - Pierre Leclerc
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Dé̇partement d'obstétrique, gynécologie et reproduction, Faculté de médecine, Université Laval, QC, Québec, Canada
| | - Mario Duchesne
- Association de Mise en Valeur de La Race Bovine Canadienne (AVRBC), Québec, QC, Canada
| | - Claude Robert
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada.
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada.
- Dé̇partement des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
| |
Collapse
|
19
|
Lyu D, Sun S, Shan X, Wang W. Inbreeding evaluation using microsatellite confirmed inbreeding depression in growth in the Fenneropenaeus chinensis natural population. Front Genet 2023; 14:1077814. [PMID: 36845375 PMCID: PMC9947229 DOI: 10.3389/fgene.2023.1077814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding inbreeding depressions (IBDs), the effect on the phenotypic performance of inbreeding, is of major importance for evolution and conservation genetics. Inbreeding depressions in aquatic animals were well documented in a domestic or captive population, while there is less evidence of inbreeding depression in natural populations. Chinese shrimp, Fenneropenaeus chinensis, is an important species in both aquaculture and fishery activities in China. To investigate inbreeding depression in natural populations, four Fenneropenaeus chinensis natural populations (Huanghua, Qinhuangdao, Qingdao, and Haiyang) were collected from the Bohai and Yellow seas. Microsatellite markers were used to evaluate individual inbreeding coefficients (F) of all samples. Furthermore, the effects of inbreeding on growth traits were investigated. The results showed marker-based F was continuous and ranged from 0 to 0.585, with an average of 0.191 ± 0.127, and there was no significant difference among the average F of the four populations. Regression analysis using the four populations showed inbreeding had a very significant (p < 0.01) effect on body weight. When analyzing a single population, regression coefficients were also all negative and those in Huanghua and in Qingdao were significant at the level of p < 0.05 and < 0.01, respectively. Inbreeding depressions, expressed as the percent change in body weight per 10% increase in F, were 2.75% in Huanghua, 2.22% in Qingdao, and 3.69% in all samples. This study provided a piece of rare evidence of inbreeding depression in natural populations and also guidance toward the conservation of wild Fenneropenaeus chinensis resources.
Collapse
Affiliation(s)
- Ding Lyu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujuan Shan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiji Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Weiji Wang,
| |
Collapse
|
20
|
Lavanchy E, Goudet J. Effect of reduced genomic representation on using runs of homozygosity for inbreeding characterization. Mol Ecol Resour 2023; 23:787-802. [PMID: 36626297 DOI: 10.1111/1755-0998.13755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are increasingly used to measure inbreeding and mostly estimated on SNP arrays and whole-genome sequencing (WGS) data. However, some softwares recurrently used for their estimation assume that genomic positions which have not been genotyped are nonvariant. This might be true for WGS data, but not for reduced genomic representations and can lead to spurious IBD segments estimation. In this project, we simulated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for three populations with different sizes and histories. We compare the results of IBD segments estimation with two softwares: runs of homozygosity (ROHs) estimated with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH requires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coefficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/Mb for RZooRoH. We also show that in populations with simple demographic histories, distribution of ROHs and HBD segments are correctly estimated with both SNP arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD segments with SNPs densities above 11 SNPs/Mb. However, in a population with a more complex demographic history, RZooRoH resulted in better distribution of IBD segments estimation compared to PLINK even with WGS data. Consequently, we advise researchers to use either methods relying on excess homozygosity averaged across SNPs or model-based HBD segments calling methods for inbreeding estimations.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Caballero A, Fernández A, Villanueva B, Toro MA. A comparison of marker-based estimators of inbreeding and inbreeding depression. Genet Sel Evol 2022; 54:82. [PMID: 36575379 PMCID: PMC9793638 DOI: 10.1186/s12711-022-00772-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the probability of identity-by-descent, IBD) and, in turn, estimation of the rate of inbreeding depression (ΔID). We investigated, by computer simulations, the accuracy of the most popular estimators of inbreeding based on molecular markers when computing F and ΔID in populations under random mating, equalization of parental contributions, and artificially selected populations. We assessed estimators described by Li and Horvitz (FLH1 and FLH2), VanRaden (FVR1 and FVR2), Yang and colleagues (FYA1 and FYA2), marker homozygosity (FHOM), runs of homozygosity (FROH) and estimates based on pedigree (FPED) in comparison with estimates obtained from IBD measures (FIBD). RESULTS If the allele frequencies of a base population taken as a reference for the computation of inbreeding are known, all estimators based on marker allele frequencies are highly correlated with FIBD and provide accurate estimates of the mean ΔID. If base population allele frequencies are unknown and current frequencies are used in the estimations, the largest correlation with FIBD is generally obtained by FLH1 and the best estimator of ΔID is FYA2. The estimators FVR2 and FLH2 have the poorest performance in most scenarios. The assumption that base population allele frequencies are equal to 0.5 results in very biased estimates of the average inbreeding coefficient but they are highly correlated with FIBD and give relatively good estimates of ΔID. Estimates obtained directly from marker homozygosity (FHOM) substantially overestimated ΔID. Estimates based on runs of homozygosity (FROH) provide accurate estimates of inbreeding and ΔID. Finally, estimates based on pedigree (FPED) show a lower correlation with FIBD than molecular estimators but provide rather accurate estimates of ΔID. An analysis of data from a pig population supports the main findings of the simulations. CONCLUSIONS When base population allele frequencies are known, all marker-allele frequency-based estimators of inbreeding coefficients generally show a high correlation with FIBD and provide good estimates of ΔID. When base population allele frequencies are unknown, FLH1 is the marker frequency-based estimator that is most correlated with FIBD, and FYA2 provides the most accurate estimates of ΔID. Estimates from FROH are also very precise in most scenarios. The estimators FVR2 and FLH2 have the poorest performances.
Collapse
Affiliation(s)
- Armando Caballero
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310 Vigo, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain
| | - Miguel A. Toro
- grid.5690.a0000 0001 2151 2978Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
Ballan M, Schiavo G, Bovo S, Schiavitto M, Negrini R, Frabetti A, Fornasini D, Fontanesi L. Comparative analysis of genomic inbreeding parameters and runs of homozygosity islands in several fancy and meat rabbit breeds. Anim Genet 2022; 53:849-862. [PMID: 36073189 PMCID: PMC9826494 DOI: 10.1111/age.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Runs of homozygosity (ROH) are defined as long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROH and their length are indicators of the level and origin of inbreeding. In this study, we analysed SNP chip datasets (obtained using the Axiom OrcunSNP Array) of a total of 702 rabbits from 12 fancy breeds and four meat breeds to identify ROH with different approaches and calculate several genomic inbreeding parameters. The highest average number of ROH per animal was detected in Belgian Hare (~150) and the lowest in Italian Silver (~106). The average length of ROH ranged from 4.001 ± 0.556 Mb in Italian White to 6.268 ± 1.355 Mb in Ermine. The same two breeds had the lowest (427.9 ± 86.4 Mb, Italian White) and the highest (921.3 ± 179.8 Mb, Ermine) average values of the sum of all ROH segments. More fancy breeds had a higher level of genomic inbreeding (as defined by ROH) than meat breeds. Several ROH islands contain genes involved in body size, body length, pigmentation processes, carcass traits, growth, and reproduction traits (e.g.: AOX1, GPX5, IFRD1, ITGB8, NELL1, NR3C1, OCA2, TRIB1, TRIB2). Genomic inbreeding parameters can be useful to overcome the lack of information in the management of rabbit genetic resources. ROH provided information to understand, to some extent, the genetic history of rabbit breeds and to identify signatures of selection in the rabbit genome.
Collapse
Affiliation(s)
- Mohamad Ballan
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Giuseppina Schiavo
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Samuele Bovo
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Michele Schiavitto
- Associazione Nazionale Coniglicoltori Italiani (ANCI), Contrada Giancola SncVolturara AppulaItaly
| | | | | | | | - Luca Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
23
|
Perdomo-González DI, Laseca N, Demyda-Peyrás S, Valera M, Cervantes I, Molina A. Fine-tuning genomic and pedigree inbreeding rates in equine population with a deep and reliable stud book: the case of the Pura Raza Española horse. J Anim Sci Biotechnol 2022; 13:127. [PMID: 36336696 PMCID: PMC9639299 DOI: 10.1186/s40104-022-00781-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Estimating inbreeding, which is omnipresent and inevitable in livestock populations, is a primary goal for management and animal breeding especially for those interested in mitigating the negative consequences of inbreeding. Inbreeding coefficients have been historically estimated by using pedigree information; however, over the last decade, genome-base inbreeding coefficients have come to the forefront in this field. The Pura Raza Española (PRE) horse is an autochthonous Spanish horse breed which has been recognised since 1912. The total PRE population (344,718 horses) was used to estimate Classical (F), Ballou's ancestral, Kalinowski's ancestral, Kalinowski's new and the ancestral history coefficient values. In addition, genotypic data from a selected population of 805 PRE individuals was used to determine the individual inbreeding coefficient using SNP-by-SNP-based techniques (methods of moments -FHOM-, the diagonal elements of the genomic -FG-, and hybrid matrixes -FH-) and ROH measures (FRZ). The analyse of both pedigree and genomic based inbreeding coefficients in a large and robust population such as the PRE horse, with proven parenteral information for the last 40 years and a high degree of completeness (over 90% for the last 70 years) will allow us to understand PRE genetic variability better and the correlations between the estimations will give the data greater reliability. RESULTS The mean values of the pedigree-based inbreeding coefficients ranged from 0.01 (F for the last 3 generations -F3-) to 0.44 (ancestral history coefficient) and the mean values of genomic-based inbreeding coefficients varied from 0.05 (FRZ for three generations, FH and FHOM) to 0.11 (FRZ for nine generations). Significant correlations were also found between pedigree and genomic inbreeding values, which ranged between 0.58 (F3 with FHOM) and 0.79 (F with FRZ). In addition, the correlations between FRZ estimated for the last 20 generations and the pedigree-based inbreeding highlight the fact that fewer generations of genomic data are required when comparing total inbreeding values, and the opposite when ancient values are calculated. CONCLUSIONS Ultimately, our results show that it is still useful to work with a deep and reliable pedigree in pedigree-based genetic studies with very large effective population sizes. Obtaining a satisfactory parameter will always be desirable, but the approximation obtained with a robust pedigree will allow us to work more efficiently and economically than with massive genotyping.
Collapse
Affiliation(s)
- Davinia Isabel Perdomo-González
- Departamento Agronomía, Escuela Técnica Superior de Ingeniería Agromómica, Universidad de Sevilla, Ctra Utrera Km 1, 41013, Sevilla, Spain.
| | - Nora Laseca
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Sebastián Demyda-Peyrás
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Mercedes Valera
- Departamento Agronomía, Escuela Técnica Superior de Ingeniería Agromómica, Universidad de Sevilla, Ctra Utrera Km 1, 41013, Sevilla, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
24
|
Carrier A, Prunier J, Poisson W, Trottier-Lavoie M, Gilbert I, Cavedon M, Pokharel K, Kantanen J, Musiani M, Côté SD, Albert V, Taillon J, Bourret V, Droit A, Robert C. Design and validation of a 63K genome-wide SNP-genotyping platform for caribou/reindeer (Rangifer tarandus). BMC Genomics 2022; 23:687. [PMID: 36199020 PMCID: PMC9533608 DOI: 10.1186/s12864-022-08899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of large single nucleotide polymorphism (SNP) arrays can make genomic data promptly available for conservation problematic. Medium and high-density panels can be designed with sufficient coverage to offer a genome-wide perspective and the generated genotypes can be used to assess different genetic metrics related to population structure, relatedness, or inbreeding. SNP genotyping could also permit sexing samples with unknown associated metadata as it is often the case when using non-invasive sampling methods favored for endangered species. Genome sequencing of wild species provides the necessary information to design such SNP arrays. We report here the development of a SNP-array for endangered Rangifer tarandus using a multi-platform sequencing approach from animals found in diverse populations representing the entire circumpolar distribution of the species. RESULTS From a very large comprehensive catalog of SNPs detected over the entire sample set (N = 894), a total of 63,336 SNPs were selected. SNP selection accounted for SNPs evenly distributed across the entire genome (~ every 50Kb) with known minor alleles across populations world-wide. In addition, a subset of SNPs was selected to represent rare and local alleles found in Eastern Canada which could be used for ecotype and population assignments - information urgently needed for conservation planning. In addition, heterozygosity from SNPs located in the X-chromosome and genotyping call-rate of SNPs located into the SRY gene of the Y-chromosome yielded an accurate and robust sexing assessment. All SNPs were validated using a high-throughput SNP-genotyping chip. CONCLUSION This design is now integrated into the first genome-wide commercially available genotyping platform for Rangifer tarandus. This platform would pave the way to future genomic investigation of populations for this endangered species, including estimation of genetic diversity parameters, population assignments, as well as animal sexing from genetic SNP data for non-invasive samples.
Collapse
Affiliation(s)
- Alexandra Carrier
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Julien Prunier
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - William Poisson
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Mallorie Trottier-Lavoie
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Isabelle Gilbert
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Maria Cavedon
- Department of biological sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | | | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Marco Musiani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Steeve D Côté
- Département de biologie - Faculté de sciences et génie, Caribou Ungava, Université Laval, Quebec City, Québec, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Claude Robert
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada. .,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada. .,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
25
|
Nogueira MB, de Faria DA, Ianella P, Paiva SR, McManus C. Genetic diversity and population structure of locally adapted Brazilian horse breeds assessed using genome-wide single nucleotide polymorphisms. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Caliebe A, Tekola‐Ayele F, Darst BF, Wang X, Song YE, Gui J, Sebro RA, Balding DJ, Saad M, Dubé M. Including diverse and admixed populations in genetic epidemiology research. Genet Epidemiol 2022; 46:347-371. [PMID: 35842778 PMCID: PMC9452464 DOI: 10.1002/gepi.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The inclusion of ancestrally diverse participants in genetic studies can lead to new discoveries and is important to ensure equitable health care benefit from research advances. Here, members of the Ethical, Legal, Social, Implications (ELSI) committee of the International Genetic Epidemiology Society (IGES) offer perspectives on methods and analysis tools for the conduct of inclusive genetic epidemiology research, with a focus on admixed and ancestrally diverse populations in support of reproducible research practices. We emphasize the importance of distinguishing socially defined population categorizations from genetic ancestry in the design, analysis, reporting, and interpretation of genetic epidemiology research findings. Finally, we discuss the current state of genomic resources used in genetic association studies, functional interpretation, and clinical and public health translation of genomic findings with respect to diverse populations.
Collapse
Affiliation(s)
- Amke Caliebe
- Institute of Medical Informatics and StatisticsKiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Fasil Tekola‐Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Burcu F. Darst
- Center for Genetic EpidemiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Xuexia Wang
- Department of MathematicsUniversity of North TexasDentonTexasUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth CollegeOne Medical Center Dr.LebanonNew HampshireUSA
| | | | - David J. Balding
- Melbourne Integrative Genomics, Schools of BioSciences and of Mathematics & StatisticsUniversity of MelbourneMelbourneAustralia
| | - Mohamad Saad
- Qatar Computing Research InstituteHamad Bin Khalifa UniversityDohaQatar
- Neuroscience Research Center, Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Marie‐Pierre Dubé
- Department of Medicine, and Social and Preventive MedicineUniversité de MontréalMontréalQuébecCanada
- Beaulieu‐Saucier Pharmacogenomcis CentreMontreal Heart InstituteMontrealCanada
| | | |
Collapse
|
27
|
Wang J. A joint likelihood estimator of relatedness and allele frequencies from a small sample of individuals. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jinliang Wang
- Institute of Zoology Zoological Society of London London UK
| |
Collapse
|
28
|
Zhang Y, Zhuo Y, Ning C, Zhou L, Liu JF. Estimate of inbreeding depression on growth and reproductive traits in a Large White pig population. G3 (BETHESDA, MD.) 2022; 12:jkac118. [PMID: 35551391 PMCID: PMC9258530 DOI: 10.1093/g3journal/jkac118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
With the broad application of genomic information, SNP-based measures of estimating inbreeding have been widely used in animal breeding, especially based on runs of homozygosity. Inbreeding depression is better estimated by SNP-based inbreeding coefficients than pedigree-based inbreeding in general. However, there are few comprehensive comparisons of multiple methods in pigs so far, to some extent limiting their application. In this study, to explore an appropriate strategy for estimating inbreeding depression on both growth traits and reproductive traits in a Large White pig population, we compared multiple methods for the inbreeding coefficient estimation based on both pedigree and genomic information. This pig population for analyzing the influence of inbreeding was from a pig breeding farm in the Inner Mongolia of China. There were 26,204 pigs with records of age at 100 kg (AGE) and back-fat thickness at 100 kg (BF), and 6,656 sows with reproductive records of the total number of piglets at birth (TNB), and the number of alive piglets at birth (NBA), and litter weight at birth. Inbreeding depression affected growth and reproductive traits. The results indicated that pedigree-based and SNP-based inbreeding coefficients had significant effects on AGE, TNB, and NBA, except for BF. However, only SNP-based inbreeding coefficients revealed a strong association with inbreeding depression on litter weight at birth. Runs of homozygosity-based methods showed a slight advantage over other methods in the correlation analysis of inbreeding coefficients and estimation of inbreeding depression. Furthermore, our results demonstrated that the model-based approach (RZooRoH) could avoid miscalculations of inbreeding and inbreeding depression caused by inappropriate parameters, which had a good performance on both AGE and reproductive traits. These findings might improve the extensive application of runs of homozygosity analysis in pig breeding and breed conservation.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yue Zhuo
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271000, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- Corresponding author: College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China. ; Corresponding author: College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
29
|
Pérez‐Pereira N, López‐Cortegano E, García‐Dorado A, Caballero A. Prediction of fitness under different breeding designs in conservation programs. Anim Conserv 2022. [DOI: 10.1111/acv.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Pérez‐Pereira
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - E. López‐Cortegano
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - A. García‐Dorado
- Departamento de Genética, Facultad de Ciencias Biológicas Universidad Complutense Madrid Spain
| | - A. Caballero
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| |
Collapse
|
30
|
Alvarez‐Estape M, Fontsere C, Serres‐Armero A, Kuderna LFK, Dobrynin P, Guidara H, Pukazhenthi BS, Koepfli K, Marques‐Bonet T, Moreno E, Lizano E. Insights from the rescue and breeding management of Cuvier's gazelle ( Gazella cuvieri) through whole-genome sequencing. Evol Appl 2022; 15:351-364. [PMID: 35386395 PMCID: PMC8965372 DOI: 10.1111/eva.13336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Captive breeding programmes represent the most intensive type of ex situ population management for threatened species. One example is the Cuvier's gazelle programme that started in 1975 with only four founding individuals, and after more than four decades of management in captivity, a reintroduction effort was undertaken in Tunisia in 2016, to establish a population in an area historically included within its range. Here, we aim to determine the genetic consequences of this reintroduction event by assessing the genetic diversity of the founder stock as well as of their descendants. We present the first whole-genome sequencing dataset of 30 Cuvier's gazelles including captive-bred animals, animals born in Tunisia after a reintroduction and individuals from a genetically unrelated Moroccan population. Our analyses revealed no difference between the founder and the offspring cohorts in genome-wide heterozygosity and inbreeding levels, and in the amount and length of runs of homozygosity. The captive but unmanaged Moroccan gazelles have the lowest genetic diversity of all genomes analysed. Our findings demonstrate that the Cuvier's gazelle captive breeding programme can serve as source populations for future reintroductions of this species. We believe that this study can serve as a starting point for global applications of genomics to the conservation plan of this species.
Collapse
Affiliation(s)
| | | | | | | | - Pavel Dobrynin
- Computer Technologies LaboratoryITMO UniversitySt. PetersburgRussian Federation
- Center for Species SurvivalNational Zoological ParkSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Center for Species SurvivalNational Zoological ParkSmithsonian Conservation Biology InstituteWashingtonDistrict of ColumbiaUSA
| | | | - Budhan S. Pukazhenthi
- Center for Species SurvivalNational Zoological ParkSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Center for Species SurvivalNational Zoological ParkSmithsonian Conservation Biology InstituteWashingtonDistrict of ColumbiaUSA
| | - Klaus‐Peter Koepfli
- Computer Technologies LaboratoryITMO UniversitySt. PetersburgRussian Federation
- Center for Species SurvivalNational Zoological ParkSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Center for Species SurvivalNational Zoological ParkSmithsonian Conservation Biology InstituteWashingtonDistrict of ColumbiaUSA
- Smithsonian‐Mason School of ConservationFront RoyalVirginiaUSA
| | - Tomas Marques‐Bonet
- Institute of Evolutionary Biology, (UPF‐CSIC)PRBBBarcelonaSpain
- CNAG‐CRGCentre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Autònoma de Barcelona (UAB)Edifici ICTA‐ICPInstitut Català de Paleontologia Miquel CrusafontBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Eulalia Moreno
- Dept. Ecología Funcional y EvolutivaEstación Experimental de Zonas Áridas‐CSICAlmeríaSpain
| | - Esther Lizano
- Institute of Evolutionary Biology, (UPF‐CSIC)PRBBBarcelonaSpain
- Universitat Autònoma de Barcelona (UAB)Edifici ICTA‐ICPInstitut Català de Paleontologia Miquel CrusafontBarcelonaSpain
| |
Collapse
|
31
|
Abstract
Traditional tree improvement is cumbersome and costly. Our main objective was to assess the extent to which genomic data can currently accelerate and improve decision making in this field. We used diameter at breast height (DBH) and wood density (WD) data for 4430 tree genotypes and single-nucleotide polymorphism (SNP) data for 2446 tree genotypes. Pedigree reconstruction was performed using a combination of maximum likelihood parentage assignment and matching based on identity-by-state (IBS) similarity. In addition, we used best linear unbiased prediction (BLUP) methods to predict phenotypes using SNP markers (GBLUP), recorded pedigree information (ABLUP), and single-step “blended” BLUP (HBLUP) combining SNP and pedigree information. We substantially improved the accuracy of pedigree records, resolving the inconsistent parental information of 506 tree genotypes. This led to substantially increased predictive ability (i.e., by up to 87%) in HBLUP analyses compared to a baseline from ABLUP. Genomic prediction was possible across populations and within previously untested families with moderately large training populations (N = 800–1200 tree genotypes) and using as few as 2000–5000 SNP markers. HBLUP was generally more effective than traditional ABLUP approaches, particularly after dealing appropriately with pedigree uncertainties. Our study provides evidence that genome-wide marker data can significantly enhance tree improvement. The operational implementation of genomic selection has started in radiata pine breeding in New Zealand, but further reductions in DNA extraction and genotyping costs may be required to realise the full potential of this approach.
Collapse
|
32
|
Zhang QS, Goudet J, Weir BS. Rank-invariant estimation of inbreeding coefficients. Heredity (Edinb) 2022; 128:1-10. [PMID: 34824382 PMCID: PMC8733021 DOI: 10.1038/s41437-021-00471-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
The two alleles an individual carries at a locus are identical by descent (ibd) if they have descended from a single ancestral allele in a reference population, and the probability of such identity is the inbreeding coefficient of the individual. Inbreeding coefficients can be predicted from pedigrees with founders constituting the reference population, but estimation from genetic data is not possible without data from the reference population. Most inbreeding estimators that make explicit use of sample allele frequencies as estimates of allele probabilities in the reference population are confounded by average kinships with other individuals. This means that the ranking of those estimates depends on the scope of the study sample and we show the variation in rankings for common estimators applied to different subdivisions of 1000 Genomes data. Allele-sharing estimators of within-population inbreeding relative to average kinship in a study sample, however, do have invariant rankings across all studies including those individuals. They are unbiased with a large number of SNPs. We discuss how allele sharing estimates are the relevant quantities for a range of empirical applications.
Collapse
Affiliation(s)
- Qian S Zhang
- Department of Biostatistics, University of Washington, Seattle, WA, 98195-1617, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA, 98195-1617, USA.
| |
Collapse
|
33
|
Schiavo G, Bovo S, Ribani A, Moscatelli G, Bonacini M, Prandi M, Mancin E, Mantovani R, Dall'Olio S, Fontanesi L. Comparative analysis of inbreeding parameters and runs of homozygosity islands in 2 Italian autochthonous cattle breeds mainly raised in the Parmigiano-Reggiano cheese production region. J Dairy Sci 2021; 105:2408-2425. [PMID: 34955250 DOI: 10.3168/jds.2021-20915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.
Collapse
Affiliation(s)
- Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giulia Moscatelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Massimo Bonacini
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, 42124 Reggio Emilia, Italy
| | - Marco Prandi
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Via Masaccio 11, 42124 Reggio Emilia, Italy
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy.
| |
Collapse
|
34
|
van Marle-Köster E, Lashmar SF, Retief A, Visser C. Whole-Genome SNP Characterisation Provides Insight for Sustainable Use of Local South African Livestock Populations. Front Genet 2021; 12:714194. [PMID: 34777459 PMCID: PMC8581043 DOI: 10.3389/fgene.2021.714194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Local cattle and sheep populations are important for animal production and food security in South Africa. These genetic resources are well adapted to the diverse climatic conditions and hold potential to be utilized in production systems subjected to climate change. The local beef breeds are well integrated into commercial livestock production systems with access to performance recording and genetic evaluations, while local sheep breeds are mainly utilised in smallholder and communal systems. The GeneSeek® Genomic Profiler™ Bovine 150 K SNP genotyping array was used to evaluate the diversity and inbreeding status of four indigenous (Boran, Drakensberger, Nguni, Tuli), two composite (Bonsmara and Beefmaster) and two exotic (SA Hereford and Charolais) beef breeds. The Illumina® Ovine 50 K SNP BeadChip was used to investigate five indigenous (Black Head Persian, Damara, Fat tail, Namaqua Afrikaner, Pedi) and three commercial (Dorper, Dohne Merino and SA Merino) populations. Although ascertainment bias was indicated by the low MAF (the autosome-wide proportion of SNPs with MAF< 0.05 ranged from 6.18 to 9.97% for cattle, and 7.59–13.81% for sheep), moderate genomic diversity was observed (mean Ho ranged from 0.296 to 0.403 for cattle, and 0.327 to 0.367 for sheep). Slightly higher levels of ROH-based inbreeding were calculated for cattle (FROH range: 0.018–0.104), than for sheep populations (FROH range: 0.002–0.031). The abundance of short ROH fragments (mean proportion of <4 Mb fragments: 0.405 for cattle, and 0.794 for sheep) indicated ancient inbreeding in both species. The eight cattle populations were categorized into indicine, taurine or Sanga subspecies based on principal component, model-based clustering and phylogenetic analyses, with high levels of admixture observed within the Drakensberger, Nguni and Tuli breeds. Within the sheep populations, a clear distinction could be seen between the dual-purpose breeds, the meat breed and the indigenous breeds. Despite directional selection practiced in the cattle breeds, genomic diversity was moderate with low inbreeding. The non-commercialized, indigenous sheep populations are more vulnerable with small effective populations. These results emphasise the value of genomic information for effective management to exploit the potential contribution of local genetic cattle and sheep resources in a changing environment.
Collapse
Affiliation(s)
| | | | - Anel Retief
- Department of Animal Science, University of Pretoria, Pretoria, South Africa
| | - Carina Visser
- Department of Animal Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
Forneris NS, Garcia-Baccino CA, Cantet RJC, Vitezica ZG. Estimating inbreeding depression for growth and reproductive traits using pedigree and genomic methods in Argentinean Brangus cattle. J Anim Sci 2021; 99:6396951. [PMID: 34648628 DOI: 10.1093/jas/skab289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Inbreeding depression reduces the mean phenotypic value of important traits in livestock populations. The goal of this work was to estimate the level of inbreeding and inbreeding depression for growth and reproductive traits in Argentinean Brangus cattle, in order to obtain a diagnosis and monitor breed management. Data comprised 359,257 (from which 1,990 were genotyped for 40,678 single nucleotide polymorphisms [SNPs]) animals with phenotypic records for at least one of three growth traits: birth weight (BW), weaning weight (WW), and finishing weight (FW). For scrotal circumference (SC), 52,399 phenotypic records (of which 256 had genotype) were available. There were 530,938 animals in pedigree. Three methods to estimate inbreeding coefficients were used. Pedigree-based inbreeding coefficients were estimated accounting for missing parents. Inbreeding coefficients combining genotyped and nongenotyped animal information were also computed from matrix H of the single-step approach. Genomic inbreeding coefficients were estimated using homozygous segments obtained from a Hidden Markov model (HMM) approach. Inbreeding depression was estimated from the regression of the phenotype on inbreeding coefficients in a multiple-trait mixed model framework, either for the whole dataset or for the dataset of genotyped animals. All traits were unfavorably affected by inbreeding depression. A 10% increase in pedigree-based or combined inbreeding would result in a reduction of 0.34 to 0.39 kg in BW, 2.77 to 3.28 kg in WW, and 0.23 cm in SC. For FW, a 10% increase in pedigree-based, genomic, or combined inbreeding would result in a decrease of 8.05 to 11.57 kg. Genomic inbreeding based on the HMM was able to capture inbreeding depression, even in such a compressed genotyped dataset.
Collapse
Affiliation(s)
- Natalia S Forneris
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), C1427CWO Buenos Aires, Argentina
| | - Carolina A Garcia-Baccino
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ Buenos Aires, Argentina
| | - Rodolfo J C Cantet
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), C1427CWO Buenos Aires, Argentina
| | | |
Collapse
|
36
|
Paul K, D'Ambrosio J, Phocas F. Temporal and region‐specific variations in genome‐wide inbreeding effects on female size and reproduction traits of rainbow trout. Evol Appl 2021; 15:645-662. [PMID: 35505890 PMCID: PMC9046919 DOI: 10.1111/eva.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/11/2021] [Accepted: 09/14/2021] [Indexed: 02/01/2023] Open
Abstract
Recent studies have shown that current levels of inbreeding, estimated by runs of homozygosity (ROH), are moderate to high in farmed rainbow trout lines. Based on ROH metrics, the aims of our study were to (i) quantify inbreeding effects on female size (postspawning body weight, fork length) and reproduction traits (spawning date, coelomic fluid weight, spawn weight, egg number, average egg weight) in rainbow trout, and (ii) identify both the genomic regions and inbreeding events affecting performance. We analysed the performance of 1346 females under linear animal models including random additive and dominance genetics effects, with fixed covariates accounting for inbreeding effects at different temporal and genomic scales. A significant effect of genome‐wide inbreeding (F) was only observed for spawning date and egg weight, with performance variations of +12.3% and −3.8%, respectively, for 0.1 unit increase in F level. At different local genomic scales, we observed highly variable inbreeding effects on the seven traits under study, ranging from increasing to decreasing trait values. As widely reported in the literature, the main scenario observed during this study was a negative impact of recent inbreeding. However, other scenarios such as positive effects of recent inbreeding or negative impacts of old inbreeding were also observed. Although partial dominance appeared to be the main hypothesis explaining inbreeding depression for all the traits studied, the overdominance hypothesis might also play a significant role in inbreeding depression affecting fecundity (egg number and mass) traits in rainbow trout. These findings suggest that region‐specific inbreeding can strongly impact performance without necessarily observing genome‐wide inbreeding effects. They shed light on the genetic architecture of inbreeding depression and its evolution along the genome over time. The use of region‐specific metrics may enable breeders to more accurately manage the trade‐off between genetic merit and the undesirable side effects associated with inbreeding.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| | - Jonathan D'Ambrosio
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
- SYSAAFStation INRAE‐LPGPCampus de Beaulieu Rennes France
| | - Florence Phocas
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| |
Collapse
|
37
|
Foster Y, Dutoit L, Grosser S, Dussex N, Foster BJ, Dodds KG, Brauning R, Van Stijn T, Robertson F, McEwan JC, Jacobs JME, Robertson BC. Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō. G3 (BETHESDA, MD.) 2021; 11:jkab307. [PMID: 34542587 PMCID: PMC8527487 DOI: 10.1093/g3journal/jkab307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Events of inbreeding are inevitable in critically endangered species. Reduced population sizes and unique life-history traits can increase the severity of inbreeding, leading to declines in fitness and increased risk of extinction. Here, we investigate levels of inbreeding in a critically endangered flightless parrot, the kākāpō (Strigops habroptilus), wherein a highly inbred island population and one individual from the mainland of New Zealand founded the entire extant population. Genotyping-by-sequencing (GBS), and a genotype calling approach using a chromosome-level genome assembly, identified a filtered set of 12,241 single-nucleotide polymorphisms (SNPs) among 161 kākāpō, which together encompass the total genetic potential of the extant population. Multiple molecular-based estimates of inbreeding were compared, including genome-wide estimates of heterozygosity (FH), the diagonal elements of a genomic-relatedness matrix (FGRM), and runs of homozygosity (RoH, FRoH). In addition, we compared levels of inbreeding in chicks from a recent breeding season to examine if inbreeding is associated with offspring survival. The density of SNPs generated with GBS was sufficient to identify chromosomes that were largely homozygous with RoH distributed in similar patterns to other inbred species. Measures of inbreeding were largely correlated and differed significantly between descendants of the two founding populations. However, neither inbreeding nor ancestry was found to be associated with reduced survivorship in chicks, owing to unexpected mortality in chicks exhibiting low levels of inbreeding. Our study highlights important considerations for estimating inbreeding in critically endangered species, such as the impacts of small population sizes and admixture between diverse lineages.
Collapse
Affiliation(s)
- Yasmin Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Grosser
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brodie J Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ken G Dodds
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Rudiger Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Tracey Van Stijn
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - John C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | | | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
38
|
Chen FL, Zimmermann M, Hekman JP, Lord KA, Logan B, Russenberger J, Leighton EA, Karlsson EK. Advancing Genetic Selection and Behavioral Genomics of Working Dogs Through Collaborative Science. Front Vet Sci 2021; 8:662429. [PMID: 34552971 PMCID: PMC8450581 DOI: 10.3389/fvets.2021.662429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
The ancient partnership between people and dogs is struggling to meet modern day needs, with demand exceeding our capacity to safely breed high-performing and healthy dogs. New statistical genetic approaches and genomic technology have the potential to revolutionize dog breeding, by transitioning from problematic phenotypic selection to methods that can preserve genetic diversity while increasing the proportion of successful dogs. To fully utilize this technology will require ultra large datasets, with hundreds of thousands of dogs. Today, dog breeders struggle to apply even the tools available now, stymied by the need for sophisticated data storage infrastructure and expertise in statistical genetics. Here, we review recent advances in animal breeding, and how a new approach to dog breeding would address the needs of working dog breeders today while also providing them with a path to realizing the next generation of technology. We provide a step-by-step guide for dog breeders to start implementing estimated breeding value selection in their programs now, and we describe how genotyping and DNA sequencing data, as it becomes more widely available, can be integrated into this approach. Finally, we call for data sharing among dog breeding programs as a path to achieving a future that can benefit all dogs, and their human partners too.
Collapse
Affiliation(s)
- Frances L. Chen
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Cellular Longevity, Inc., San Francisco, CA, United States
| | | | - Jessica P. Hekman
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Kathryn A. Lord
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Brittney Logan
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jane Russenberger
- Guiding Eyes for the Blind, Yorktown Heights, NY, United States
- International Working Dog Breeding Association, San Antonio, TX, United States
| | - Eldin A. Leighton
- International Working Dog Breeding Association, San Antonio, TX, United States
- Canine Genetic Services, LLC, Watertown, CT, United States
| | - Elinor K. Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
- Darwin's Ark Foundation, Seattle, WA, United States
| |
Collapse
|
39
|
Major EI, Höhn M, Avanzi C, Fady B, Heer K, Opgenoorth L, Piotti A, Popescu F, Postolache D, Vendramin GG, Csilléry K. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol Ecol 2021; 30:5247-5265. [PMID: 34365696 PMCID: PMC9291806 DOI: 10.1111/mec.16107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
Variation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations’ resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine‐scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1,368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east‐west isolation‐by‐distance pattern consistent with the post‐glacial colonization history of the species. Genetic differentiation among sites (FCT = 0.148) was an order of magnitude greater than between elevations within sites (FSC = 0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modelling revealed that elevation and, to a lesser extent, post‐glacial colonization history, but not climatic and habitat variables, were the best predictors of FSGS across populations. These results suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide information about demographic history complementary to non‐spatial statistics, and could be used for genetic diversity monitoring, especially in forest trees.
Collapse
Affiliation(s)
- Enikő I Major
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Mária Höhn
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Bruno Fady
- Ecology of Mediterranean Forests (URFM), INRAE, UR629, Avignon, France
| | - Katrin Heer
- Conservation Biology, Philipps Universität Marburg, Marburg, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany.,Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Flaviu Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Dragos Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
40
|
How Depressing Is Inbreeding? A Meta-Analysis of 30 Years of Research on the Effects of Inbreeding in Livestock. Genes (Basel) 2021; 12:genes12060926. [PMID: 34207101 PMCID: PMC8234567 DOI: 10.3390/genes12060926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Inbreeding depression has been widely documented for livestock and other animal and plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020 on seven livestock species, and compared the degree of inbreeding depression (1) across different trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease in phenotypic value of 0.13% of a trait’s mean, or 0.59% of a trait’s standard deviation. Inbreeding had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based measures. There were no consistent differences in p-values for percentage of homozygous SNPs, inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship matrix. The number of studies that directly compares these different measures, however, is limited and comparisons are furthermore complicated by differences in scale and arbitrary definitions of particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide the dataset with inbreeding depression estimates of 154 studies and stress the importance of always reporting detailed information (on traits, inbreeding coefficients, and models used) along with inbreeding depression estimates.
Collapse
|
41
|
Seppälä O, Çetin C, Cereghetti T, Feulner PGD, Adema CM. Examining adaptive evolution of immune activity: opportunities provided by gastropods in the age of 'omics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200158. [PMID: 33813886 PMCID: PMC8059600 DOI: 10.1098/rstb.2020.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Parasites threaten all free-living organisms, including molluscs. Understanding the evolution of immune defence traits in natural host populations is crucial for predicting their long-term performance under continuous infection risk. Adaptive trait evolution requires that traits are subject to selection (i.e. contribute to organismal fitness) and that they are heritable. Despite broad interest in the evolutionary ecology of immune activity in animals, the understanding of selection on and evolutionary potential of immune defence traits is far from comprehensive. For instance, empirical observations are only rarely in line with theoretical predictions of immune activity being subject to stabilizing selection. This discrepancy may be because ecoimmunological studies can typically cover only a fraction of the complexity of an animal immune system. Similarly, molecular immunology/immunogenetics studies provide a mechanistic understanding of immunity, but neglect variation that arises from natural genetic differences among individuals and from environmental conditions. Here, we review the current literature on natural selection on and evolutionary potential of immune traits in animals, signal how merging ecological immunology and genomics will strengthen evolutionary ecological research on immunity, and indicate research opportunities for molluscan gastropods for which well-established ecological understanding and/or 'immune-omics' resources are already available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Otto Seppälä
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Cansu Çetin
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Teo Cereghetti
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Coen M. Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
42
|
Hasselgren M, Dussex N, von Seth J, Angerbjörn A, Olsen RA, Dalén L, Norén K. Genomic and fitness consequences of inbreeding in an endangered carnivore. Mol Ecol 2021; 30:2790-2799. [PMID: 33955096 DOI: 10.1111/mec.15943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Reduced fitness through genetic drift and inbreeding is a major threat to small and isolated populations. Although previous studies have generally used genetically verified pedigrees to document effects of inbreeding and gene flow, these often fail to capture the whole inbreeding history of the species. By assembling a draft arctic fox (Vulpes lagopus) genome and resequencing complete genomes of 23 additional foxes born before and after a well-documented immigration event in Scandinavia, we here look into the genomic consequences of inbreeding and genetic rescue. We found a difference in genome-wide diversity, with 18% higher heterozygosity and 81% lower FROH in immigrant F1 compared to native individuals. However, more distant descendants of immigrants (F2, F3) did not show the same pattern. We also found that foxes with lower inbreeding had higher probability to survive their first year of life. Our results demonstrate the important link between genetic variation and fitness as well as the transient nature of genetic rescue. Moreover, our results have implications in conservation biology as they demonstrate that inbreeding depression can effectively be detected in the wild by a genomic approach.
Collapse
Affiliation(s)
| | - Nicolas Dussex
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Johanna von Seth
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
43
|
Sin SYW, Hoover BA, Nevitt GA, Edwards SV. Demographic History, Not Mating System, Explains Signatures of Inbreeding and Inbreeding Depression in a Large Outbred Population. Am Nat 2021; 197:658-676. [PMID: 33989142 DOI: 10.1086/714079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractInbreeding depression is often found in small, inbred populations, but whether it can be detected in and have evolutionary consequences for large, wide-ranging populations is poorly known. Here, we investigate the possibility of inbreeding in a large population to determine whether mild levels of inbreeding can still have genetic and phenotypic consequences and how genomically widespread these effects can be. We apply genome-wide methods to investigate whether individual and parental heterozygosity is related to morphological, growth, or life-history traits in a pelagic seabird, Leach's storm-petrel (Oceanodroma leucorhoa). Examining 560 individuals as part of a multiyear study, we found a substantial effect of maternal heterozygosity on chick traits: chicks from less heterozygous (relatively inbred) mothers were significantly smaller than chicks from more heterozygous (noninbred) mothers. We show that these heterozygosity-fitness correlations were due to general genome-wide effects and demonstrate a correlation between heterozygosity and inbreeding, suggesting inbreeding depression. We used population genetic models to further show that the variance in inbreeding was probably due to past demographic events rather than the current mating system and ongoing mate choice. Our findings demonstrate that inbreeding depression can be observed in large populations and illustrate how the integration of genomic techniques and fieldwork can elucidate its underlying causes.
Collapse
|
44
|
Frank SC, Pelletier F, Kopatz A, Bourret A, Garant D, Swenson JE, Eiken HG, Hagen SB, Zedrosser A. Harvest is associated with the disruption of social and fine-scale genetic structure among matrilines of a solitary large carnivore. Evol Appl 2021; 14:1023-1035. [PMID: 33897818 PMCID: PMC8061280 DOI: 10.1111/eva.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/27/2022] Open
Abstract
Harvest can disrupt wildlife populations by removing adults with naturally high survival. This can reshape sociospatial structure, genetic composition, fitness, and potentially affect evolution. Genetic tools can detect changes in local, fine-scale genetic structure (FGS) and assess the interplay between harvest-caused social and FGS in populations. We used data on 1614 brown bears, Ursus arctos, genotyped with 16 microsatellites, to investigate whether harvest intensity (mean low: 0.13 from 1990 to 2005, mean high: 0.28 from 2006 to 2011) caused changes in FGS among matrilines (8 matrilines; 109 females ≥4 years of age), sex-specific survival and putative dispersal distances, female spatial genetic autocorrelation, matriline persistence, and male mating patterns. Increased harvest decreased FGS of matrilines. Female dispersal distances decreased, and male reproductive success was redistributed more evenly. Adult males had lower survival during high harvest, suggesting that higher male turnover caused this redistribution and helped explain decreased structure among matrilines, despite shorter female dispersal distances. Adult female survival and survival probability of both mother and daughter were lower during high harvest, indicating that matriline persistence was also lower. Our findings indicate a crucial role of regulated harvest in shaping populations, decreasing differences among "groups," even for solitary-living species, and potentially altering the evolutionary trajectory of wild populations.
Collapse
Affiliation(s)
- Shane C. Frank
- Department of Natural Sciences and Environmental HealthUniversity of South‐Eastern NorwayTelemarkNorway
| | - Fanie Pelletier
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Audrey Bourret
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | - Dany Garant
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | - Jon E. Swenson
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | | | - Andreas Zedrosser
- Department of Natural Sciences and Environmental HealthUniversity of South‐Eastern NorwayTelemarkNorway
- Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Applied Life SciencesViennaAustria
| |
Collapse
|
45
|
Martin SA, Lipps GJ, Gibbs HL. Pedigree-based assessment of recent population connectivity in a threatened rattlesnake. Mol Ecol Resour 2021; 21:1820-1832. [PMID: 33738927 DOI: 10.1111/1755-0998.13383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Managing endangered species in fragmented landscapes requires estimating dispersal rates between populations over contemporary timescales. Here, we developed a new method for quantifying recent dispersal using genetic pedigree data for close and distant kin. Specifically, we describe an approach that infers missing shared ancestors between pairs of kin in habitat patches across a fragmented landscape. We then applied a stepping-stone model to assign unsampled individuals in the pedigree to probable locations based on minimizing the number of movements required to produce the observed locations in sampled kin pairs. Finally, we used all pairs of reconstructed parent-offspring sets to estimate dispersal rates between habitat patches under a Bayesian model. Our approach measures connectivity over the timescale represented by the small number of generations contained within the pedigree and so is appropriate for estimating the impacts of recent habitat changes due to human activity. We used our method to estimate recent movement between newly discovered populations of threatened Eastern Massasauga rattlesnakes (Sistrurus catenatus) using data from 2996 RAD-based genetic loci. Our pedigree analyses found no evidence for contemporary connectivity between five genetic groups, but, as validation of our approach, showed high dispersal rates between sample sites within a single genetic cluster. We conclude that these five genetic clusters of Eastern Massasauga rattlesnakes have small numbers of resident snakes and are demographically isolated conservation units. More broadly, our methodology can be widely applied to determine contemporary connectivity rates, independent of bias from shared genetic similarity due to ancestry that impacts other approaches.
Collapse
Affiliation(s)
- Scott A Martin
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| | - Gregory J Lipps
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
de Jager D, Glanzmann B, Möller M, Hoal E, van Helden P, Harper C, Bloomer P. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Sci Rep 2021; 11:4540. [PMID: 33633171 PMCID: PMC7907399 DOI: 10.1038/s41598-021-83823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Genomes retain records of demographic changes and evolutionary forces that shape species and populations. Remnant populations of African buffalo (Syncerus caffer) in South Africa, with varied histories, provide an opportunity to investigate signatures left in their genomes by past events, both recent and ancient. Here, we produce 40 low coverage (7.14×) genome sequences of Cape buffalo (S. c. caffer) from four protected areas in South Africa. Genome-wide heterozygosity was the highest for any mammal for which these data are available, while differences in individual inbreeding coefficients reflected the severity of historical bottlenecks and current census sizes in each population. PSMC analysis revealed multiple changes in Ne between approximately one million and 20 thousand years ago, corresponding to paleoclimatic changes and Cape buffalo colonisation of southern Africa. The results of this study have implications for buffalo management and conservation, particularly in the context of the predicted increase in aridity and temperature in southern Africa over the next century as a result of climate change.
Collapse
Affiliation(s)
- Deon de Jager
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Cindy Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
47
|
Schiavo G, Bovo S, Muñoz M, Ribani A, Alves E, Araújo JP, Bozzi R, Čandek-Potokar M, Charneca R, Fernandez AI, Gallo M, García F, Karolyi D, Kušec G, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim Genet 2021; 52:155-170. [PMID: 33544919 DOI: 10.1111/age.13045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
ROHs are long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROHs and their length are indicators of the level and origin of inbreeding. Frequent common ROHs within the same population define ROH islands and indicate hotspots of selection. In this work, we investigated ROHs in a total of 1131 pigs from 20 European local pig breeds and in three cosmopolitan breeds, genotyped with the GGP Porcine HD Genomic Profiler. plink software was used to identify ROHs. Size classes and genomic inbreeding parameters were evaluated. ROH islands were defined by evaluating different thresholds of homozygous SNP frequency. A functional overview of breed-specific ROH islands was obtained via over-representation analyses of GO biological processes. Mora Romagnola and Turopolje breeds had the largest proportions of genome covered with ROH (~1003 and ~955 Mb respectively), whereas Nero Siciliano and Sarda breeds had the lowest proportions (~207 and 247 Mb respectively). The highest proportion of long ROH (>16 Mb) was in Apulo-Calabrese, Mora Romagnola and Casertana. The largest number of ROH islands was identified in the Italian Landrace (n = 32), Cinta Senese (n = 26) and Lithuanian White Old Type (n = 22) breeds. Several ROH islands were in regions encompassing genes known to affect morphological traits. Comparative ROH structure analysis among breeds indicated the similar genetic structure of local breeds across Europe. This study contributed to understanding of the genetic history of the investigated pig breeds and provided information to manage these pig genetic resources.
Collapse
Affiliation(s)
- G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - E Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J P Araújo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, Ponte de Lima, 4990-706, Portugal
| | - R Bozzi
- DAGRI - Animal Science Division, Università di Firenze, Via delle Cascine 5, Firenze, 50144, Italy
| | - M Čandek-Potokar
- Kmetijski Inštitut Slovenije, Hacquetova 17, Ljubljana, SI-1000, Slovenia
| | - R Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - A I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, Rome, 00198, Italy
| | - F García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, Zagreb, 10000, Croatia
| | - G Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, Osijek, 31000, Croatia
| | - J M Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - M-J Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, Le Rheu Cedex, 35651, France
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - R Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, 82317, Lithuania
| | - J Riquet
- GenPhySE, Université de Toulouse, INRA, Chemin de Borde-Rouge 24, Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - G Usai
- Agris Sardegna, Loc. Bonassai, Sassari, 07100, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, Wolpertshausen, 74549, Germany
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
48
|
Caballero A, Villanueva B, Druet T. On the estimation of inbreeding depression using different measures of inbreeding from molecular markers. Evol Appl 2021; 14:416-428. [PMID: 33664785 PMCID: PMC7896712 DOI: 10.1111/eva.13126] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/09/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The inbreeding coefficient (F) of individuals can be estimated from molecular marker data, such as SNPs, using measures of homozygosity of individual markers or runs of homozygosity (ROH) across the genome. These different measures of F can then be used to estimate the rate of inbreeding depression (ID) for quantitative traits. Some recent simulation studies have investigated the accuracy of this estimation with contradictory results. Whereas some studies suggest that estimates of inbreeding from ROH account more accurately for ID, others suggest that inbreeding measures from SNP-by-SNP homozygosity giving a large weight to rare alleles are more accurate. Here, we try to give more light on this issue by carrying out a set of computer simulations considering a range of population genetic parameters and population sizes. Our results show that the previous studies are indeed not contradictory. In populations with low effective size, where relationships are more tight and selection is relatively less intense, F measures based on ROH provide very accurate estimates of ID whereas SNP-by-SNP-based F measures with high weight to rare alleles can show substantial upwardly biased estimates of ID. However, in populations of large effective size, with more intense selection and trait allele frequencies expected to be low if they are deleterious for fitness because of purifying selection, average estimates of ID from SNP-by-SNP-based F values become unbiased or slightly downwardly biased and those from ROH-based F values become slightly downwardly biased. The noise attached to all these estimates, nevertheless, can be very high in large-sized populations. We also investigate the relationship between the different F measures and the homozygous mutation load, which has been suggested as a proxy of inbreeding depression.
Collapse
Affiliation(s)
- Armando Caballero
- Centro de Investigación Mariña, Departamento de Bioquímica, Genética e Inmunología, Edificio CC ExperimentaisUniversidade de VigoVigoSpain
| | - Beatriz Villanueva
- Departamento de Mejora GenéticaInstituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
| | - Tom Druet
- Unit of Animal GenomicsGIGA‐R & Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| |
Collapse
|
49
|
Pérez de Los Cobos F, Martínez-García PJ, Romero A, Miarnau X, Eduardo I, Howad W, Mnejja M, Dicenta F, Socias I Company R, Rubio-Cabetas MJ, Gradziel TM, Wirthensohn M, Duval H, Holland D, Arús P, Vargas FJ, Batlle I. Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars. HORTICULTURE RESEARCH 2021; 8:11. [PMID: 33384415 PMCID: PMC7775440 DOI: 10.1038/s41438-020-00444-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/16/2023]
Abstract
Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed. Inbreeding coefficients, pairwise relatedness, and genetic contribution were calculated for these genotypes. The results reveal two mainstream breeding lines based on three cultivars: "Tuono", "Cristomorto", and "Nonpareil". Descendants from "Tuono" or "Cristomorto" number 76 (sharing 34 descendants), while "Nonpareil" has 71 descendants. The mean inbreeding coefficient of the analyzed genotypes was 0.041, with 14 genotypes presenting a high inbreeding coefficient, over 0.250. Breeding programs from France, the USA, and Spain showed inbreeding coefficients of 0.075, 0.070, and 0.037, respectively. According to their genetic contribution, modern cultivars from Israel, France, the USA, Spain, and Australia trace back to a maximum of six main founding genotypes. Among the group of 65 genotypes carrying the Sf allele for self-compatibility, the mean relatedness coefficient was 0.125, with "Tuono" as the main founding genotype (24.7% of total genetic contribution). The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide. Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress.
Collapse
Affiliation(s)
- Felipe Pérez de Los Cobos
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Pedro J Martínez-García
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Espinardo, Murcia, Spain
| | - Agustí Romero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain
| | - Xavier Miarnau
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Gardeny Park, Fruitcentre Building, 25003, Lleida, Spain
| | - Iban Eduardo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Werner Howad
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Mourad Mnejja
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Federico Dicenta
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Espinardo, Murcia, Spain
| | - Rafel Socias I Company
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Maria J Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | | | - Michelle Wirthensohn
- University of Adelaide, Waite Research, School of Agriculture, Food and Wine, PMB 1, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Henri Duval
- Institut National de la Recherche Agronomique (INRA), Domain St. Maurice CS 60094, 84143, Montfavet Cedex, France
| | - Doron Holland
- Agricultural Research Organization, Newe-Ya'ar Research Center, P.O. Box 1021, Ramat Yishad, 30095, Israel
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Francisco J Vargas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain
| | - Ignasi Batlle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain.
| |
Collapse
|
50
|
Palombo V, Pegolo S, Conte G, Cesarani A, Macciotta NPP, Stefanon B, Ajmone Marsan P, Mele M, Cecchinato A, D'Andrea M. Genomic prediction for latent variables related to milk fatty acid composition in Holstein, Simmental and Brown Swiss dairy cattle breeds. J Anim Breed Genet 2020; 138:389-402. [PMID: 33331079 DOI: 10.1111/jbg.12532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
Genomic selection (GS) reports on milk fatty acid (FA) profiles have been published quite recently and are still few despite this trait represents the most important aspect of milk nutritional and sensory quality. Reasons for this can be found in the high costs of phenotype recording but also in issues related to its nature of complex trait constituted by multiple genetically correlated variables with low heritabilities. One possible strategy to deal with such constraint is represented by the use of dimension reduction methods. We analysed 40 individual FAs from Italian Brown Swiss, Holstein and Simmental milk through multivariate factor analysis (MFA) to study the genetics of milk FA-related latent variables (factors) and assess their potential use in breeding. A total of nine factors were obtained, and their genetic parameters were inferred under a Bayesian framework using two statistical approaches: the classical pedigree best linear unbiased prediction (ABLUP) and the single-step genomic BLUP (ssGBLUP). The resulting factorial solutions were able to represent groups of FAs with common origin and function and can be considered concise pathway-level phenotypes. The heritability (h2 ) values showed relevant variations across different factors in each breed (0.03 ≤ h2 ≤ 0.38). The accuracies of breeding values predicted were low to high, ranging from 0.13 to 0.72 and from 0.18 to 0.74 considering the pedigree and the genomic model, respectively. The gain in accuracy in genetic prediction due to the addition of genomic information was ~30% and ~5% in validation and training groups respectively, confirming the contribution of genomic information in yielding more accurate predictions compared to the traditional ABLUP methodology. Our results suggest that MFA in combination with GS can be a valuable tool in dairy cattle breeding and deserves to be further investigated for use in future breeding programs to improve cow's milk FA-related traits.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Sara Pegolo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Padova, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Sezione Scienze Zootecniche, Università degli Studi di Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | | | - Bruno Stefanon
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, Università di Udine, Udine, Italy
| | - Paolo Ajmone Marsan
- Dipartimento di Scienze Animali, degli Alimenti e della Nutrizione - DIANA e Centro di Ricerca Nutrigenomica e Proteomica - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marcello Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy
| | - Alessio Cecchinato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Padova, Italy
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|